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Abstract 

Discovery and translation of gene-environment interactions (GxEs) influencing clinical outcomes is limited by low 
statistical power and poor mechanistic understanding. Molecular omics data may help address these limitations, 
but their incorporation into GxE testing requires principled analytic approaches. We focused on genetic modifica-
tion of the established mechanistic link between dietary long-chain omega-3 fatty acid (dN3FA) intake, plasma 
N3FA (pN3FA), and chronic inflammation as measured by high sensitivity CRP (hsCRP). We considered an approach 
that decomposes the overall genetic effect modification into components upstream and downstream of a molecular 
mediator to increase the potential to discover gene-N3FA interactions. Simulations demonstrated improved power 
of the upstream and downstream tests compared to the standard approach when the molecular mediator for many 
biologically plausible scenarios. The approach was applied in the UK Biobank (N = 188,700) with regression models 
that used measures of dN3FA (based on fish and fish oil intake), pN3FA (% of total fatty acids measured by nuclear 
magnetic resonance), and hsCRP. Mediation analysis showed that pN3FA fully mediated the dN3FA-hsCRP main effect 
relationship. Next, we separately tested modification of the dN3FA-hsCRP (“standard”), dN3FA-pN3FA (“upstream”), 
and pN3FA-hsCRP (“downstream”) associations. The known FADS1-3 locus variant rs174535 reached p = 1.6 × 10–12 
in the upstream discovery analysis, with no signal in the downstream analysis (p = 0.94). It would not have been 
prioritized based on a naïve analysis with dN3FA exposure and hsCRP outcome (p = 0.097), indicating the value 
of the decomposition approach. Gene-level enrichment testing of the genome-wide results further prioritized two 
genes from the downstream analysis, CBLL1 and MICA, with links to immune cell counts and function. In summary, 
a molecular mediator-focused interaction testing approach enhanced statistical power to identify GxEs while homing 
in on relevant sub-components of the dN3FA-hsCRP pathway.
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Background
Gene-environment interactions (GxEs), in which the 
relationship between an exposure and outcome is mod-
ified by a genetic variant, continue to hold promise for 
the development of more precise clinical and behavio-
ral interventions for the prevention of cardiometabolic 
disease. Compared to intervention trials, observational 
datasets allow for the exploration of GxEs in much 
larger sample sizes and with a broader array of expo-
sures and thus a greater opportunity to uncover new 
biology. However, these analyses are still limited in sta-
tistical power [9].

Molecular omics data are being increasingly collected 
in observational cohort studies, with promise to add 
mechanistic insight and dynamic longitudinal meas-
ures to genotype-only analyses. This potential applies 
directly to some of the challenges present in GxE stud-
ies. Molecular data can increase power for detection by 
acting as objective proxies for exposures (e.g., lifestyle 
or environment) that otherwise require noisy estimates 
based on self-report [20]. They also represent interme-
diates on biological pathways linking genotypes and 
exposures to outcomes of interest, allowing for mech-
anistically informative analyses [18]. However, such 
molecular data require associated analytical approaches 
to coherently incorporate them into GxE testing.

A particularly straightforward example of such a medi-
ated pathway is the relationship between dietary long-
chain omega-3 fatty acid (dN3FA) intake, plasma N3FA 
(pN3FA), and chronic inflammation [6]. dN3FA intake, 
coming primarily from oily fish and fish oil supplements, 
is a primary determinant of pN3FA, which acts as a physi-
ological N3FA status indicator and is sometimes used as 
a dietary intake proxy. pN3FA is consistently associated 
with lower hsCRP, and long-chain N3FA supplementation 
has been shown to decrease the chronic inflammatory 
biomarker high-sensitivity C-reactive protein (hsCRP), 
though this finding is less consistent. Genetic variation, 
especially at the fatty acid desaturase (FADS) locus, may 
play a role in this variable response to dN3FA [23].

We reasoned that a decomposed interaction testing 
approach, separating an exposure-outcome pathway 
into components upstream and downstream of a molec-
ular mediator, would increase the potential to discover 
associated gene-N3FA interactions impacting hsCRP. 
We first use simulations to illustrate the expected gain 
in statistical power to detect interactions using this 
approach. We proceed to explore genetic modification 
of the dN3FA-hsCRP relationship after its decomposi-
tion into dN3FA-pN3FA (upstream) and pN3FA-hsCRP 
(downstream) sub-pathways, uncovering interactions 
at variants and genes that would not have been found 
using a standard GxE testing approach.

Methods
Simulations
Simulations were performed to understand how statisti-
cal power for interaction detection changes when vary-
ing a small set of underlying parameters governing the 
strength of the interactions, mediating pathways, and 
measurement error. First, genotypes (G) were generated 
from a binomial distribution with a minor allele fre-
quency of 0.25 and exposures (E) were generated from 
a standard normal distribution. Next, a mediator (M) 
was generated, incorporating signal from a G*E product 
term (for upstream simulations) or from an E main effect 
(for downstream simulations). From this, a “measured” 
mediator (Mmeasured) was generated, tracking the true 
M but with added noise according to a specified intra-
class correlation coefficient (ICCM). Finally, an outcome 
(Y) was generated, incorporating signal from a main 
effect of M (for upstream simulations) or from a G*M 
product term (for downstream simulations). For each 
scenario, interaction terms were tested for significance 
in two of three regressions: Y ∼ G + E + GE (stand-
ard), Mmeasured ∼ G + E + GE (upstream only), and 
Y ∼ G +M + GMmeasured (downstream only). Finally, 
power for each scenario was calculated as the fraction of 
tests passing the chosen significance threshold out of the 
total number of repeated simulations.

For simplicity, in the primary set of simulations, the 
sample size was fixed at N = 1,000, the significance 
threshold was set to 0.05, and the number of repeated 
simulations per scenario was fixed at 500. For upstream 
simulations, three parameters were varied: the propor-
tion of variance in M explained by the G × E interaction, 
the proportion of variance in Y explained by M, and the 
measurement error in M (ICCM). For downstream simu-
lations, three parameters were varied: the proportion of 
variance in M explained by E, the proportion of variance 
in Y explained by the G × M interaction, and the meas-
urement error in M (ICCM). We note that, despite the 
small sample size used here compared to biobank data-
sets, the relative changes in power based on simulated 
interaction strength, degree of pathway mediation, and 
measurement error should be consistent.

UK Biobank population and genotype data
The primary analysis was conducted under a Not Human 
Subjects Research determination for UKB data analysis 
(NHSR-4298 at the Broad Institute of MIT and Harvard) 
and UK Biobank application 27,892. UKB is a large pro-
spective cohort with both deep phenotyping and molec-
ular data, including genome-wide genotyping, on over 
500,000 individuals ages 40–69 living throughout the 
UK between 2006–2010 [25]. Genotyping, imputation, 
and initial quality control on the genetic dataset have 
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been described previously [5]. We used a multi-ancestry 
sample of individuals that had not withdrawn consent by 
the time of analysis. Additionally, we subset to a group 
of unrelated samples (by including only those that were 
used for genetic principal components analysis during 
central genetic data preprocessing) and removed partici-
pants who were pregnant or had diabetes, coronary heart 
disease, liver cirrhosis, or cancer. Genetic variants with 
minor allele frequency (MAF) > 1% in the full analysis 
population were included in genome-wide and follow-up 
studies.

Phenotypic data
The primary outcome trait, hsCRP, was originally meas-
ured in plasma using an immunoturbidimetric assay 
(Beckman Coulter AU5800). Values were log-trans-
formed and outliers (more than 5 standard deviations 
from the mean of the log-transformed values) were 
removed prior to analysis.

The primary N3FA variable for analysis was intended 
to reflect only long-chain, marine sources, thus excluding 
plant-based sources of dietary omega-3 such as alpha-
linolenic acid (ALA; see Discussion). N3FA intake data 
came from multiple self-reported sources. All partici-
pants completed a 30-item food frequency questionnaire 
(FFQ) at the baseline assessment center visit, which has 
been validated for reliably ranking participants accord-
ing to intake of major food groups but is not sufficient 
for calculating specific nutrient intake estimates [4]. Esti-
mates for typical intake of both oily fish and non-oily fish 
(servings/day; fields 1329 and 1339) were retrieved from 
this FFQ. Fish oil supplementation was recorded based 
on reported use as a medication, with variables derived 
from both touchscreen questionnaire (UKB field 6179) 
and verbal interview (field 20,003).

Additional covariates collected for analysis included 
genetically-determined sex, age, age2, a sex-by-age prod-
uct term, income (5 categories), educational attainment 
(6 categories), smoking (categorical: never, past, or cur-
rent), alcohol intake (categorical: weekly frequency 
estimates), and additional diet variables from the FFQ 
(cooked vegetables, raw vegetables, fresh fruit, processed 
meat), and a categorical diet variable (bread type; whole-
meal or wholegrain bread versus other types). For vari-
ables coded as categorical, ambiguous categories such 
as “do not know” or “prefer not to answer” were left as 
non-missing to allow them to constitute an independent 
category for adjustment. Additional covariates used for 
sensitivity analysis included body mass index (kg/m2), total 
physical activity (continuous; MET-min/wk), and self-
reported medication usage (separate binary indicators 
for cholesterol medication, blood pressure medication, 

and insulin, based on UKB fields 6153 for females and 
6177 for males).

Plasma N3FA measurements
Various measurements of plasma N3FA status were 
available from the Nightingale platform (N = 199,059), 
These data were preprocessed using the ukbnmr R pack-
age [22], which includes imputation of zero values, log-
transformation, adjustment for key batch variables such 
as shipment plate and time between sample preparation 
and measurement, and transformation back into absolute 
concentrations. Ultimately, relevant available N3FA spe-
cies included: direct N3FA concentrations, docosahexa-
noic acid (DHA), and both of these quantities as fractions 
of total fatty acids and total polyunsaturated fatty acids. 
Non-DHA pN3FA was calculated by subtracting DHA% 
from total N3FA%. Eicosapentanoic acid was not meas-
ured directly but should constitute approximately two 
thirds of this non-DHA quantity [1].

An overall estimate of dietary N3FA intake (“dN3FA”) 
was calculated as a weighted sum of four key sources: 
oily and non-oily fish intake based on FFQ, touchscreen-
reported fish oil intake, and verbal interview-reported 
fish oil intake. To determine the relative contribution 
of each source, total N3FA% was regressed on the four 
dietary sources in the full population. The dN3FA vari-
able was then calculated as a linear combination of these 
components, weighted by their corresponding multivari-
able regression effect estimates. Missing values for fish oil 
variables were imputed as “no intake” when taking this 
weighted sum.

Main effect analysis and mediation testing
All statistical analyses were performed using R version 
4.2.2 [21] unless otherwise noted. Linear regression mod-
els were used to understand the associations between 
various self-reported dietary N3FA sources and hsCRP 
using standard model-based standard errors (in contrast 
to the robust standard errors used in genome-wide inter-
action testing) and the covariates described above. Supp. 
Fig. S2 shows the directed acyclic graph and preliminary 
main effect regression results used to guide the choice of 
covariates. Initial models included additional adjustment 
for assessment center variable (one indicator variable per 
center), but this adjustment was removed from down-
stream analysis due to the minimal impact on regression 
estimates.

Mediation analysis examined the degree to which the 
plasma fatty acids mentioned above mediated the rela-
tionship between dN3FA and hsCRP. Mediation tests 
were performed using the mediation package for R [10, 
27], using robust standard errors and 100 Monte Carlo 
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draws. Exposures and outcomes were scaled to mean 
zero and standard deviation one to create compara-
ble mediation effect estimates across exposures. The 
output of each analysis included estimates of the total 
effect, the average causal mediation effect (ACME), 
and the direct effect. We note that, given the continu-
ous exposure and outcome variables explored here, 
this mediation framework reduces conceptually to the 
linear structural equation modeling approach origi-
nally described by Baron and Kenny [3]. Self-reported 
raw vegetable intake was used as a negative control for 
the mediation analysis, given the similarity of its likely 
confounding structure based on the examination of its 
Pearson correlations with selected outcome and socio-
economic variables (see Results).

Gene‑environment interaction modeling
Genome-wide interaction studies (GWIS) were per-
formed using GEM v1.5.2 [29] with robust standard 
errors. The primary interaction model was as follows:

where y represents the outcome of interest, g repre-
sents the imputed genotype dosage, and E represents the 
exposure of interest. Covariates were the same as used 
for main effect models, with the addition of 10 genetic 
principal components as calculated centrally by the UKB 
team. GWIS were performed for three pathways: “stand-
ard” (E = dN3FA, Y = hsCRP), “upstream” (E = dN3FA, 
Y = pN3FA), and “downstream” (E = pN3FA, Y = hsCRP). 
Significance was assessed based on a standard genome-
wide threshold of p < 5 × 10–8. GWIS results were pruned 
using PLINK 2.0 [7], using an LD reference panel consist-
ing of a random 20,000-participant subset of the UKB 
and with parameters as follows: index variant p-value 
threshold = 5 × 10–8, LD r2 threshold = 0.2, and clumping 
radius = 5,000 kb. Sensitivity models at top loci included 
adjustment for: (1) exposure-by-gPC interaction terms, 
(2) genetic interaction terms for all covariates, and (3) 
body mass index (BMI) as a measure of adiposity.

GWIS results were subject to enrichment analysis to 
prioritize genes with enrichment of interaction signal 
in the surrounding genetic region. Interaction p-values 
from the GWIS were used as input to the MAGMA 
program [8], using the same LD reference panel as 
used for pruning and gene regions defined from 2  kb 
upstream to 1 kb downstream of the gene limits based 
on the NCBI database (GRCh37). Sensitivity analyses as 
described above were performed using the most signifi-
cant variant from each gene-based finding.

y ∼ g + E + g ∗ E + covariates

Results
Simulations revealed the extent to which the decom-
posed approach is advantageous over the standard GxE 
testing approach as a function of the magnitude of the 
genetic interaction and the relationships between the 
exposure (E), mediator (M), and outcome (Y). As shown 
in Fig.  1, upstream interaction tests were more power-
ful when the true genetic interaction was with E (rather 
than M). Intuitively, the power of the upstream test 
matched that of the standard test as the M-Y relationship 
became stronger (i.e., in the limit that M fully determines 
Y). However, at more plausible values, the difference in 
power was substantial: when the GxE explained 0.5% of 
the variance in M, which then explained only 10% of the 
variance in Y, the upstream test was more powerful by a 
factor of 1.79 (38% versus 21% power). Even more stark 
patterns were observed for the downstream tests as a 
function of the strength of the E-M relationship. Power 
for the downstream test was equal when E fully deter-
mined M, but was greater by a factor of 4.72 (43% versus 
9% power) when we simulated a GxM explaining 0.5% of 
the variance in Y and an E explaining 10% of the variance 
in M. We note that the simulations presented in Fig.  1 
assume perfect measurement of the mediator; power of 
the decomposed approach decreases as this measure-
ment error increases (see Supp. Fig. S1). Nonetheless, 
these results support the greater power of the decom-
posed approach for GxE discovery in most scenarios in 
which molecular mediators are known and measured.

A summary of the UKB population, which was primar-
ily of European ancestry but included individuals from 
six ancestry groups based on assignments from the Pan-
UKBB project [11] can be found in Supp. Table S1. Pre-
liminary regressions confirmed the expected negative 
association between dietary N3FA sources (fish and fish 
oil) and hsCRP, with the association partially attenuated 
by adjustment for confounders (Supp. Fig. S2). Of the 
available pN3FA measures, total N3FA, as a percentage 
of total plasma fatty acids, showed the strongest cor-
relations with dietary N3FA sources. Based on this, an 
overall estimate of dietary N3FA intake (“dN3FA”) was 
calculated as a weighted sum of four key sources (oily and 
non-oily fish, touchscreen-reported fish oil intake, and 
verbal interview-reported fish oil intake), with oily fish 
contributing most substantially to the derived dN3FA 
estimate (Supp. Fig. S3, Supp. Table S2).

This derived dN3FA metric was positively associ-
ated with pN3FA, while both dN3FA and pN3FA were 
negatively associated with hsCRP (Fig.  2a-c). Mediation 
analysis showed that the dN3FA-hsCRP relationship was 
mediated by pN3FA (mediated effect: −0.037, total effect: 
−0.023; Fig. 2d, Supp. Table S3). This result, with a medi-
ated effect greater than the total estimated effect, is a case 
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Fig. 1  Power simulations and conceptual basis for the decomposed GxE testing approach. a Conceptual diagram indicates the relationships 
between the exposure (E), mediator (M), and continuous outcome (Y), with line thickness denoting proportion of variance explained. Dotted 
lines correspond to interaction effects. b,c Power plots display simulation results. X-axes correspond to the strength (quantified by proportion 
of variance explained) of the M-Y relationship (upstream, left) or E-M relationship (downstream, right). Faceted panels correspond to the strength 
of the simulated genetic interaction with E (upstream) or M (downstream). No measurement error is included in the simulations summarized here 
(see Supp. Fig. S1)



Page 6 of 11Westerman et al. Genes & Nutrition            (2025) 20:3 

of inconsistent mediation that can indicate residual nega-
tive confounding in the opposite direction of the medi-
ated effect [17]. Thus, we explored several additional 
mediation analyses to confirm the result. As shown in 
Supp. Fig. S4, the total and mediated effects were larger 

for oily compared to non-oily fish, as expected due to the 
higher N3FA content. Additionally, raw vegetable intake, 
which is related similarly correlated with other confound-
ing variables and outcomes (Supp. Fig. S4a), served as a 
negative control with a comparable total effect on hsCRP, 

Fig. 2  Relationships and mediation between dietary N3FA, plasma N3FA, and hsCRP. a-c Curves show the relationship between dN3FA and pN3FA 
(a), pN3FA and non-transformed hsCRP (b), and dN3FA and non-transformed hsCRP (c). Curves were estimated using a restricted cubic spline with 3 
knots. X-axes correspond to estimated dN3FA (units of % total blood fatty acids due to the derivation of this dietary intake proxy; see Methods) 
or pN3FA (same units). Y-axes correspond to pN3FA or hsCRP (mg/L). d Estimates and 95% CIs for the total, mediated (indirect; ACME), and direct 
effects from mediation analysis are shown for the pathway in which pN3FA mediates the dN3FA-hsCRP relationship. e ACME (mediated effect) 
estimates are shown using either total % N3FA (i.e., total pN3FA) or subsets of this quantity (DHA and non-DHA; see Methods) as the mediating 
quantity
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but with minimal estimated mediation by pN3FA. When 
comparing mediation estimates across pN3FA subspecies 
(DHA vs. non-DHA), most of the mediated effect was 
attributable to DHA (Fig. 2e).

Next, we performed a series of three GWIS, corre-
sponding to the upstream, downstream, and standard 
pathways. One locus (on chromosome 11 containing the 
FADS genes) reached p < 5 × 10–8 in the upstream analysis, 
while there were none for the downstream or standard 
pathways (Fig.  3; Supp. Fig. S5; index variants reaching 
p < 5 × 10–6 listed in Supp. Table S4). Given the strong sig-
nal and known biology for the FADS locus, we explored 
the set of interactions at this locus more in-depth. The 
lead variant for the upstream analysis, rs174535, reached 
pint = 1.6 × 10–12. Importantly, it showed no interaction 
signal for the downstream pathway (pint = 0.94) and would 
not have been prioritized based on the standard pathway 
analysis (pint = 0.097; Fig. 4a). This variant-specific differ-
ence in findings was supported by an additional power 
simulation applying relevant parameters: using a sample 
size of 200,000, GxE proportion of variance explained of 

0.0252 = 0.000625, M-Y proportion of variance explained 
of 0.009, and MAF of 0.25, the upstream pathway had a 
power of approximately 1 at genome-wide significance, 
versus 0 for the standard pathway. Exploring the signal at 
this variant further, stratified plots indicated a stronger 
association between dN3FA and pN3FA for carriers of 
the pN3FA-decreasing allele (Fig. 4b). Sensitivity analyses 
for the interaction with rs174535 indicated robustness 
to additional covariates, including gPC-exposure and 
genotype-covariate interaction terms and adjustment 
for adiposity, physical activity, or use of selected medica-
tions (see Methods; Supp. Table  S5), and did not reveal 
any direct association with dietary intake behavior (from 
regression of dN3FA on rs174535; p = 0.80).

We then performed gene-level enrichment analysis 
using the MAGMA program to further increase power 
by pooling signal across variants within each gene region 
(Fig. 5). Using a false discovery rate threshold of q < 0.05 
(based on the Benjamini–Hochberg method calculated 
separately for each of the three pathways), this analysis 
showed the same signals for the upstream and standard 

Fig. 3  Chicago plot displays variant interaction p-values as a function of chromosomal position for the upstream (top) and downstream (bottom) 
pathways. Y-axes show -log(p) for interaction tests (based on robust standard errors), while the x-axis indicates chromosomal position. Dotted lines 
indicate the genome-wide significance threshold of 5 × 10–8. See Supp. Fig. S5 for results from the standard pathway
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analyses (a series of genes within the larger FADS locus, 
and none, respectively). The downstream analysis 
revealed two additional genes: CBLL1 (pgene = 4.9 × 10–7) 
and MICA (pgene = 3.9 × 10–6). CBLL1 codes for a gene 
involved in immune-related pathways and has genetic 
associations with circulating immune cell counts. MICA 
also has very strong evidence for an effect on immune 
cell counts and codes for a gene with a key role in adap-
tive immune function. Thus, while having only mod-
est genetic main effects on hsCRP itself in association 
studies, both genes have biologically plausible mecha-
nisms for involvement in the modulation of inflamma-
tion by immune cells in response to changes in pN3FA 
status. These genes did not show any signal in gene-level 
enrichment of results from the standard pathway (both 
p > 0.05).

Discussion
We explored the use of a molecular mediator-focused 
interaction testing approach to improve the statisti-
cal power and biological precision of GxE discovery 

analysis, using N3FA and hsCRP in a mechanistically 
informed case study. We showed that variants in the 
key FADS locus modify the dN3FA-pN3FA relation-
ship, with an upstream interaction appearing that 
would not have been discovered independently of the 
molecular mediator. Furthermore, we described addi-
tional genes appearing in enrichment analysis of the 
downstream pathway analysis.

Analytical approaches combining omics and mediation 
analysis are increasingly used [18], with continual meth-
ods development improving statistical models for multi-
ple models and incomplete data [13, 31]. There has been 
some discussion in the statistical literature of frameworks 
combining mediation and interaction, with distinctions 
made between mediation upstream or downstream of 
the interaction itself [14, 16]. One example from genetic 
epidemiology leveraged this concept to explain how 
sex-associated blood cell proportion differences might 
explain sex heterogeneity in expression-quantitative 
trait loci [12]. The approach described here differs in 
that its goal is to increase GxE discovery by leveraging 

Fig. 4  Investigation of the FADS locus interactions. a Summary of the decomposed interaction testing for rs174535, including the standard, 
upstream, and downstream test p-values for interaction. b Depiction of the interaction at rs174535 using mean pN3FA levels stratified by genotype 
(x-axis) and categories of oily fish intake (colors)
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knowledge about molecular mediators, rather than to 
explain previously observed interactions.

The strongest and only variant-specific finding was 
part of the upstream pathway analysis. Conceptually, 
this relates to the relationship between dietary intake 
and plasma N3FA status, which is affected by both the 
efficiency of absorption of N3FAs and the rate of their 
endogenous production from essential fatty acid pre-
cursors. Notably, this interaction signal would not 
have been uncovered in the standard pathway analysis 
(genetic modification of the dN3FA-hsCRP relationship). 
This lack of signal using the standard approach can be 
explained by the complex and multifactorial set of inputs 
determining hsCRP, with pN3FA explaining only a small 
portion of the variability in hsCRP in our dataset (0.9%). 
This discrepancy is supported by the post hoc power 
comparison indicating a power of 1 for the upstream 
pathway versus 0 for the downstream pathway. However, 
this does not necessarily indicate a lack of relevance of 
this interaction for chronic inflammation, due to both 
the imperfection of hsCRP as a marker of chronic inflam-
mation and potential error in hsCRP measurement. Fur-
thermore, by revealing modifiers of pN3FA status, this 
type of upstream analysis has implications for not only 
inflammation, but also any N3FA-related risk factor or 
disease state. Our finding also suggests caution in the 
use of pN3FA as a biomarker of dietary intake, since the 

dN3FA-pN3FA relationship that underlies this dietary 
proxy may be biased according to genetic variation.

The FADS locus has one of the strongest known main 
effects on pN3FA [15]. The biological function of these 
genes, especially FADS1 and FADS2, is related to the pro-
duction of long-chain N3FAs from alpha-linolenic acid. 
Interactions of this locus with dN3FA intake have been 
explored, with inconsistent findings [23]. Based on our 
stratified models (such as in Fig. 4b), variants at this locus 
related to lower mean pN3FA also associate with a mod-
estly stronger association between dN3FA and pN3FA, 
consistent with an overall endogenous feedback mecha-
nism that enables greater absorption and incorporation 
of N3FA given lower baseline status. This is additionally 
consistent with the metabolic role of the FADS genes in 
long-chain N3FA production. Specifically, variability in 
the abundance or function of these genes products plays 
a direct role in their production from ALA, and thus 
their circulating concentrations, but has a minimal role 
in metabolizing the diet-derived fatty acids themselves. 
Thus, a mechanism based on endogenous feedback loops 
(in which higher baseline status decreases production 
or absorption) is most likely to be playing a role in the 
observed interaction.

Smith and colleagues did not find evidence of a simi-
lar interaction impacting pN3FA for two variants in 
the FADS1 locus in a meta-analysis of cohorts from the 

Fig. 5  Manhattan plot displays gene-level interaction p-values as a function of chromosomal position for the upstream (red) and downstream 
(green) pathways. The y-axis shows -log(p) for gene-level enrichment tests of interaction effects from MAGMA, while the x-axis indicates 
the chromosomal position of the 5’ gene boundary. The dotted line denotes a Bonferroni significance threshold accounting for 18,249 genes tested. 
Colored points correspond to genes reaching FDR q < 0.05
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CHARGE consortium [24]. This study differed in the col-
lection of cohorts and overall sample size (N = 11,668) as 
well as the combination of circulating fatty acid measure-
ments from plasma (as analyzed here) and erythrocyte 
membranes, which they note as a source of potential 
heterogeneity.

Beyond this finding in the upstream analysis, we also 
report multiple genes passing a false discovery rate 
threshold in gene-level enrichment analysis of the down-
stream analysis linking pN3FA to hsCRP. Both CBLL1 
and MICA have biologically plausible explanations for 
impact on hsCRP via immune cell counts and function, 
establishing hypotheses for more in-depth exploration 
that would not have been prioritized using a standard 
GxE testing strategy without molecular mediators (all 
p > 0.05 in the standard pathway analysis). We also note 
that this downstream analysis has conceptual links to 
GxE studies using molecular quantities as exposures or 
“contexts” [19, 32].

In interpreting these results, it should be noted that the 
decomposition approach, including this N3FA applica-
tion, depends on the quality and comprehensiveness of 
the measurement of mediating molecular species. For 
example, this study only considers N3FA as measured 
in plasma due to data availability, despite potential het-
erogeneity in genetic interaction results compared to 
other measurement compartments such as erythrocyte 
membranes [24]. Additionally, despite the statistical sig-
nificance of the uncovered FADS locus interaction, the 
practical relevance is quite small, with the interaction 
explaining only about 0.06% of the variance in pN3FA. 
We studied only long-chain N3FA because of their 
greater prevalence in plasma and more sparse and clear 
dietary sources, meaning that these interactions may not 
apply to plant-based sources of N3FA providing ALA. 
However, there is some evidence of an effect of ALA 
intake on hsCRP and other inflammatory biomarkers, 
making this a compelling area for future study [2]. Our 
use of only common variants in this study may have lim-
ited the space of possible variant effects,more clinically 
relevant effects may be discoverable by analyzing rare 
variation [30] or using polygenic score-based approaches 
[26, 28].

Future work could expand this analysis in multiple 
directions. First, the biological case study presented 
here explores a relatively narrow biological ques-
tion involving the pathway from dN3FA to pN3FA to 
hsCRP; future analyses focused more directly on N3FA 
biology could include more fine-grained measure-
ments of specific dietary and plasma N3FA subspecies 
as well as a broader range of outcome metrics. Second, 
this strategy could be expanded to include multiple 

mediators, as has been described for omics-related 
main effect mediation analysis [31] but not extended 
to the realm of GxEs to our knowledge. Finally, while 
we used only unrelated individuals in this study, mixed 
models accounting for familial or other sample related-
ness (e.g., longitudinal data) can be straightforwardly 
incorporated into mediation testing frameworks [31].

In summary, our interaction decomposition approach 
leverages molecular mediators to improve the power 
to discover GxEs while improving the biological inter-
pretability of the results. Applying this strategy using 
dietary and plasma N3FAs and hsCRP, we showed 
signal at the known FADS locus that was not present 
for the standard analysis, while additionally reporting 
multiple genes enriched in signal for the downstream 
analysis. We anticipate that this framework can guide 
more effective future GxE studies that leverage molecu-
lar quantities to increase discovery and mechanistic 
understanding.
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