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Abstract

Background: The frequency of vitamin D-associated gene variants appear to reflect changes in long-term ultraviolet B
radiation (UVB) environment, indicating interactions exist between the primary determinant of vitamin D status, UVB
exposure and genetic disposition. Such interactions could have health implications, where UVB could modulate the impact
of vitamin D genetic variants identified as disease risk factors. However, the current understanding of how vitamin D variants
differ between populations from disparate UVB environments is limited, with previous work examining a small pool of
variants and restricted populations only.

Methods: Genotypic data for 46 variants within multiple vitamin D-related loci (DHCR7/NADSYN1, GC, CYP2R1, CYP11A1,
CYP27A1, CYP24A1, VDR, RXRα and RXRγ) was collated from 60 sample sets (2633 subjects) with European, East Asian and
Sub-Saharan African origin via the NCBI 1000 Genomes Browser and ALFRED (Allele Frequency Database), with the aim to
examine for patterns in the distribution of vitamin D-associated variants across these geographic areas.

Results: The frequency of all examined genetic variants differed between populations of European, East Asian and Sub-
Saharan African ancestry. Changes in the distribution of variants in CYP2R1, CYP11A1, CYP24A1, RXRα and RXRγ genes
between these populations are novel findings which have not been previously reported. The distribution of several
variants reflected changes in the UVB environment of the population’s ancestry. However, multiple variants displayed
population-specific patterns in frequency that appears not to relate to UVB changes.

Conclusions: The reported population differences in vitamin D-related variants provides insight into the extent by
which activity of the vitamin D system can differ between cohorts due to genetic variance, with potential
consequences for future dietary recommendations and disease outcomes.
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Introduction
Ultraviolet B radiation (UVB; 290–320 nm) exposure is the
primary factor influencing vitamin D status in humans, with
environmental UVB levels varying considerably by latitude
and season. Furthermore, vitamin D status is modulated by
variance in vitamin D-associated genes [1, 2], with key genes
relating to the production (DHCR7/NADSYN1), binding and
transport (GC), metabolism (CYP2R1, CYP27A1, CYP27B1,
CYP11A1 and CYP24A1), and activation of vitamin D (VDR
and RXRα, RXRβ, RXRγ) [3]. Both UVB exposure and vita-
min D-associated single nucleotide polymorphisms (SNPs)
are risk factors for vitamin D insufficiency and many related
diseases, such as cardiovascular disease, infectious diseases
and cancers [1, 4, 5].
The impact of UVB and vitamin D-related genetics are

not merely additive, but may also be interactive. Indeed,
there is evidence that the frequency of SNPs in vitamin
D-associated genes reflect changes in UVB environment
[6–9]. These findings indicate that the functionality of
the vitamin D system varies between individuals of dif-
fering ethnicities or UVB environments. Genetic differ-
ences between populations may also modify vitamin D’s
influence on related disease risk [1, 4], warranting fur-
ther investigation in this area given the current lack of
convincing evidence around vitamin D’s roles in many
diseases [10]. However, despite an abundance of research
into vitamin D-related variants, studies focusing on how
the distribution of such variants differs between geo-
graphic populations is limited.
The relationship between vitamin D-associated SNPs

and skin pigmentation is an important consideration re-
garding differences between geographically defined pop-
ulations. Skin pigmentation is an apparent adaptation to
differing UVB environments, with darker-pigmented
populations originating in areas of high UVB, and
lighter-pigmented populations in lower UVB areas [11–
13]. However, the genetic architecture underlying skin
pigmentation differs even between populations exposed
to similar UVB regimes. A key example of this is the fact
that parts of Europe and East Asia share similar UVB
conditions, but the evolution of lighter skin phenotypes
in these populations evolved independently, via different
genetic adaptions [14, 15].
Similar geographic patterns may exist in vitamin D-

associated SNPs. Both vitamin D and skin pigmentation
pathways respond to changes in UVB. Importantly, the
vitamin D hypothesis proposes that the reduction of skin
pigmentation in early humans migrating out of Africa to
areas of lower UVB areas occurred to facilitate vitamin D
production [11, 12]. This hypothesis is based on the UVB
induced synthesis of vitamin D being dependent on skin
pigmentation levels, with competition for UVB absorption
existing between pigments and the vitamin D cholesterol
precursor. Consequently, lighter-skinned individuals can

synthesise up to 30 times more vitamin D than
darker-skinned individuals following identical UVB
exposure [16].
Our current understanding of how variation in vitamin

D-associated genes differs between global populations is
limited. Notably, there has been a significant focus on
examining vitamin D genetics in Europeans [17–19] with
little attention given to other global populations. There-
fore, in the present study, a more comprehensive ap-
proach has been taken; genotypic data for variants
within multiple vitamin D-related genes was collated
from 60 sample sets [2633 subjects] with European, East
Asian and Sub-Saharan African origin to examine for
potential patterns in the geographic distribution of vita-
min D-associated SNPs.

Results
Validation of European, East Asian and Sub-Saharan
African groups with skin pigmentation SNPs
The mean allelic frequencies of SLC24A5 rs1426654,
SLC45A2 rs16891982 and OCA2 rs1800414 in derived
geographic groups did not deviate from previously re-
ported frequencies in populations of European (EUR), East
Asian (EAS) and Sub-Saharan African (AFR) ancestry [20,
21]. rs1426654 and rs16891982 frequency were the highest
in EUR (0.99 and 0.91, respectively). Conversely,
rs1426654 and rs16891982 were near absent in EAS and
AFR (mean frequencies 0.00–0.08; Table 1). Presence of
rs1800414 was exclusive to the EAS group (mean fre-
quency 0.59).

Annual UVB levels in European, East Asian and Sub-
Saharan African sample set areas
Global mean annual UVB levels and sample set locations
are shown in Fig. 1, with the highest mean annual UVB
levels found in AFR locations followed by EAS and EUR
sample set locations as expected (82.2 vs. 48.1 vs. 18.4
Mw/m2/nm respectively). Intergroup comparisons found
significant differences between all geographic areas for
annual UVB levels (p < 0.001).

Distribution of vitamin D production/transport-related
variants (NADSYN1/DHCR7 and GC) across European, East
Asian and Sub-Saharan African groups
Sixteen variants in genes involved in vitamin D produc-
tion (NADSYN1/DHCR7) and transport (GC) were ex-
amined, eight within the NADSYN1/DHCR7 loci and
eight within GC (Table 2).
The frequencies of all NADSYN1/DHCR7 variants var-

ied by geographic group (p < 0.0001, r2 0.59–0.87). Pat-
terns of distribution varied by SNP (Table 2). For
NADSYN1/DHCR7 variants rs11603330, rs7944926 and
rs3794060, allelic frequency differed between all geo-
graphic groups, with their distribution coinciding with
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changes in environmental UVB. rs7944926 increased in
areas of increased environmental UVB (i.e. frequency
highest in AFR, lowest in EUR), whilst rs11603330 and
rs3794060 decreased with increased UVB levels (i.e.
frequency lowest in AFR, highest in EUR).
Four other NADSYN1/DHCR7 variants, rs3750997,

rs1790325, rs7928249 and rs12800438, frequencies dif-
fered in EUR compared to EAS and AFR. rs3750997,
rs7928249 and rs12800438 frequencies were increased in
EAS and AFR, compared to EUR, with the inverse rela-
tionship observed for rs1790325. Another NADSYN1/
DHCR7 variant, rs12280295, was near absent in the EUR
and EAS (mean frequencies of 0.00), with higher fre-
quency in AFR (0.23). Considering these distribution
patterns together, there was no apparent trend for

NADSYN1/DHCR7 polymorphisms to be in higher in one
geographic region over another.
The allelic frequency of all examined GC genotypes

varied by geographic group (p < 0.0001, r2 0.64–0.94).
The largest effect was observed for rs705117 (p < 0.0001,
r2 0.94), with the frequency of this variant differing be-
tween all geographic regions, and decreasing in geo-
graphic areas of increasing UVB (EUR 0.84, EAS 0.50
and AFR 0.17). Interestingly, five other GC variants
followed this distribution pattern (rs7041, rs222047,
rs222016, rs222020, rs843006 and rs705117). Another
GC variant, rs4364228 had reduced frequencies in EUR
(0.09) and EAS (0.12) compared to AFR (0.45), and a
further variant, rs3737549, was shown to absent in the
EUR group (0.00), but increasingly present in EAS and

Table 1 Frequency of skin pigmentation variants in EUR, EAS and AFR groups

Mean allelic frequency (95% CI)*

Sample sets (subjects) EUR EAS AFR p r2

SLC24A5 rs1426654 60 (2598) 0.99 (0.97–1.01) 0.03a (0.00–0.05) 0.08a (0.05–0.10) 6.20e–57 0.99

SLC45A2 rs16891982 60 (2480) 0.91 (0.89–0.94) 0.01a (- 0.02–0.03) 0.00a (- 0.02–0.03) 4.19e–52 0.98

OCA2 rs1800414 60 (2633) 0.00a (- 0.03–0.03) 0.59 (0.55–0.62) 0.00a (- 0.03–0.03) 1.09e–36 0.94

*Frequency values notated with the same letter are not significantly different from each other

Fig. 1 Mean annual UVB levels (surface irradiance at 305 nm) at locations of EUR, EAS and AFR sample sets
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AFR (0.14 and 0.22, respectively; Table 2). Considered
together, frequencies of examined GC variants were the
highest in either EUR or AFR groups, with high frequen-
cies in EAS uncommon.

Distribution of variants in vitamin D metabolism genes
(CYP11A1, CYP24A1, CYP27A1 and CYP2R1) across
European, East Asian and Sub-Saharan African groups
Fourteen cytochrome P450 (CYP) variants fit the inclu-
sion criteria (two in CYP11A1, five each in CYP24A1
and CYP27A1 and two in CYP2R1). Allelic frequency of
all 14 variants varied by geographic groups (p < 0.0001;
Table 3).
Two CYP11A1 variants varied in frequency by geographic

group (rs11632698 and rs2073475; p < 0.0001, r2 0.86 and
0.88, respectively) but displayed different distribution pat-
terns across geographic groups. The distribution of CYP11A1
rs2073475 coincided with increasing UVB (EUR 0.16, EAS
0.45 and 0.58). CYP11A1 rs11632698 frequency significantly
differed in EUR compared to EAS and AFR (mean frequency
of 0.57 in EUR and 0.20 in EAS and AFR).
Five CYP24A1 variant frequencies varied by geographic

group (rs3787557, rs927650, rs912505, rs2762929 and
rs4809956, p < 0.0001, r2 0.82–0.85). For three variants,
frequencies differed between all geographic groups
(rs3787557, rs927650 and rs912505). A potential UVB-

dependent trend in rs927650 was noted (frequencies of
0.47, 0.27 and 0.18 in EUR, EAS and AFR groups respect-
ively). For another two variants, rs2762929 and rs4809956,
frequency was significantly higher in EUR (rs2762929
0.58, rs4809956 0.81) compared to EAS and AFR groups
(rs2762929 0.22–0.33, rs4809956 0.36–0.47). Examining
these distribution patterns together, frequencies of
CYP24A1 and CYP27A1 variants tended to be the highest
in EUR or EAS groups.
Two of the 5 examined CYP27A1 variants, rs691414

and rs692290, appeared to be fixed in EUR and EAS
(mean allelic frequencies of 1.00). Conversely, frequencies
were significantly reduced in AFR (rs691414; 0.78 and
rs692290; 0.60). These variants had the largest effect sizes
of examined CYP27A1 variants (p < 0.0001, rs691414 r2

0.89, rs692290; r2 0.96). The remaining examined
CYP27A1 variants displayed differing patterns in allelic
frequency. rs7568196 had low frequencies in EAS and
AFR (0.02–0.22), with increased frequency in EUR (0.40).
Frequency of rs13013510 and rs4674338 were significantly
different in all geographic groups, with the highest fre-
quency for rs13013510 reported in AFR (0.65), and EAS
for rs4674338 (0.93). Interestingly, despite differing distri-
bution patterns observed for CYP27A1 variants, there was
a trend for frequencies of these variants to be the highest
in EUR and EAS over AFR.

Table 2 Frequency of NADSYN1/DHCR7 and GC variants in EUR, EAS and AFR groups

Mean allelic frequency (95% CI)*

Sample sets (subjects) EUR EAS AFR p r2 Distribution pattern#

NADSYN1/DHCR7

rs3750997 60 (2356) 0.30 (0.25–0.36) 0.58a (0.52–0.63) 0.65a (0.59–0.70) 3.18e–12 0.59 EUR≠AFR and EAS

rs1790325 45 (1854) 0.95 (0.89–1.02) 0.73a (0.66–0.79) 0.57a (0.50–0.63) 9.90e–10 0.61 EUR ≠ AFR and EAS

rs11603330 60 (2356) 0.69 (0.64–0.73) 0.35 (0.31–0.40) 0.11 (0.07–0.16) 7.09e–26 0.86 EUR ≠ AFR ≠ EAS

rs7928249 34 (2293) 0.29 (0.22–0.36) 0.66a (0.58–0.74) 0.63a (0.56–0.70) 1.06e-08 0.67 EUR ≠ AFR and EAS

rs12800438 60 (2352) 0.30 (0.24–0.35) 0.63a (0.57–0.68) 0.66a (0.61–0.71) 3.04e–14 0.65 EUR ≠ AFR and EAS

rs7944926 60 (2356) 0.30 (0.25–0.34) 0.63 (0.58–0.67) 0.86 (0.82–0.91) 1.68e–24 0.85 EUR ≠ AFR ≠ EAS

rs3794060 60 (2356) 0.70 (0.66–0.75) 0.37 (0.33–0.42) 0.11 (0.07–0.15) 5.87e–26 0.87 EUR ≠ AFR ≠ EAS

rs12280295 60 (2356) 0.00a (− 0.04–0.04) 0.00a (− 0.04–0.04) 0.23 (0.19–0.26) 1.57e–13 0.63 AFR ≠ EUR and EAS

GC

rs7041 60 (2354) 0.58 (0.55–0.61) 0.28 (0.25–0.31) 0.10 (0.07–0.13) 2.17e–30 0.91 EUR ≠ AFR ≠ EAS

rs4364228 60 (2354) 0.09a (0.06–0.13) 0.12a (0.09–0.15) 0.45 (0.42–0.48) 2.16e–24 0.85 AFR ≠ EUR and EAS

rs222047 60 (2356) 0.58 (0.55–0.61) 0.23 (0.20–0.26) 0.12 (0.09–0.14) 4.09e–31 0.91 EUR ≠ AFR ≠ EAS

rs3737549 60 (2356) 0.00 (− 0.03–0.03) 0.14a (0.11–0.17) 0.22a (0.19–0.25) 6.72e–14 0.64 EUR ≠ AFR and EAS

rs222016 60 (2327) 0.85 (0.82–0.88) 0.62 (0.59–0.65) 0.37 (0.34–0.40) 2.20e–30 0.91 EUR ≠ AFR ≠ EAS

rs222020 60 2356 0.85 (0.82–0.88) 0.62 (0.59–0.65) 0.36 (0.33–0.39) 1.54e–30 0.91 EUR ≠ AFR ≠ EAS

rs843006 60 (2355) 0.83 (0.80–0.86) 0.62 (0.59–0.65) 0.31 (0.28–0.35) 6.98e–30 0.90 EUR ≠ AFR ≠ EAS

rs705117 60 (2356) 0.84 (0.81–0.88) 0.50 (0.46–0.53) 0.17 (0.14–0.20) 6.42e–36 0.94 EUR ≠ AFR ≠ EAS

*Frequency values notated with the same letter are not significantly different from each other
#EUR ≠ AFR ≠ EAS; allelic frequency differed between all geographic groups, EUR ≠ AFR and EAS; allelic frequency differed between EUR and both AFR and EAS,
AFR ≠ EUR and EAS; allelic frequency differed between AFR and both EUR and EAS
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The frequencies of CYP2R1 variants (rs16930625 and
rs11023374) differed by geographic group (p < 0.0001,
rs16930625; r2 0.41 rs11023374; r2 0.79), although there
was no trend for CYP2R1 variants to be higher in one
geographic region over others. rs16930625 had low fre-
quencies in all groups (0.06–0.21), but was higher in
AFR compared to EUR. rs11023374 had a lower fre-
quency in EAS and AFR (0.01–0.11), compared to EUR
(0.28).

Distribution of variants in genes relating to vitamin D
activity (VDR, RXRα and RXRγ) across European, East
Asian and Sub-Saharan African groups
Sixteen variants in vitamin D-related nuclear receptor
genes were examined (five VDR, seven RXRα and four
RXRγ; Table 4).
The allelic frequencies of all examined VDR variants

varied by geographic group (rs886441, rs2283342,
rs2107301, rs4334089 and rs4516035; p < 0.0001, r2 0.71–
0.93). The greatest effect size was for rs4516035 (p <
0.0001, r2 0.93), which had reduced frequencies in AFR
and EAS (0.03), compared to EUR (0.43). VDR rs886441,
rs2283342, rs2107301 and rs4334089 allelic frequencies
differed between all geographic groups. Only rs4334089

appeared to have a UVB relationship, with frequency de-
creasing in areas of increasing UVB.
Six of the seven examined RXRα variants varied by the

examined geographic groups (rs1805343, rs1805352,
rs10881582, rs3118571, rs731516 and rs7040434; p <
0.0001; r2 0.95–0.99). Interestingly, these six RXRα vari-
ants followed the same distribution pattern, with differ-
ences in AFR when compared to EUR and EAS. For five
variants (rs1805343, rs1805352, rs10881582, rs3118571
and rs731516), the allelic frequency was reduced in AFR
compared to EAS and EUR. Notably, RXRα rs731516
was fixed in EUR and EAS (mean frequency of 1.0), with
reduced frequency in AFR (0.59). rs7040434 was absent
in EUR and EAS (0.00) but not AFR (0.53; r2 0.99).
Four RXRγ variants varied by geographic group (rs283695,

rs12069160, rs10800098 and rs10489745; p < 0.0001, r2

0.80–0.92). Frequencies of three variants (rs12069160,
rs10800098 and rs10489745) did not differ between EUR
and AFR, but frequency differed in EAS. The rs283695 vari-
ant had increased frequencies in EUR and AFR (0.77 and
0.85 respectively) compared to EUR (0.44).
There was no trend for examined VDR and RXRγ vari-

ants to be higher in specific geographic groups, although
frequencies of examined RXRα variants appeared to be
the highest in either EUR or EAS. However, genotypic

Table 3 Frequency of CYP11A1, CYP24A1, CYP27A1 and CYP2R1 variants in EUR, EAS and AFR groups

Sample
sets
(subjects)

Mean allelic frequency (95% CI)* Distribution
pattern#EUR EAS AFR p r2

CYP11A1

rs11632698 60 (2357) 0.57 (0.54–0.60) 0.20a (0.17–0.23) 0.20a (0.17–0.23) 3.37e–25 0.86 EUR ≠ AFR and EAS

rs2073475 60 (2352) 0.16 (0.13–0.16) 0.45 (0.42–0.48) 0.58 (0.55–0.61) 1.89e–27 0.88 EUR ≠ AFR ≠ EAS

CYP24A1

rs3787557 60 (2349) 0.13 (0.11–0.16) 0.27 (0.24–0.29) 0.00 (− 0.02–0.03) 3.55e–22 0.82 EUR ≠ AFR ≠ EAS

rs927650 60 (2380) 0.47 (0.44–0.49) 0.27 (0.25–0.30) 0.18 (0.16–0.21) 4.52e–22 0.82 EUR ≠ AFR ≠ EAS

rs912505 60 (2356) 0.21 (0.18–0.25) 0.62 (0.59–0.65) 0.45 (0.41–0.48) 1.04e–23 0.84 EUR ≠ AFR ≠ EAS

rs2762929 69 (2356) 0.58 (0.55–0.61) 0.30a (0.26–0.33) 0.25a (0.22–0.29) 1.40e–20 0.79 EUR ≠ AFR and EAS

rs4809956 45 (1854) 0.81 (0.77–0.86) 0.43a (0.39–0.47) 0.40a (0.36–0.44) 2.23e–18 0.85 EUR ≠ AFR and EAS

CYP27A1

rs7568196 60 (2355) 0.40 (0.35-0.44) 0.06a (0.02–0.11) 0.18a (0.13–0.22) 3.20e–14 0.65 EUR ≠ AFR and EAS

rs4674338 60 (2301) 0.58 (0.56–0.61) 0.93 (0.91–0.96) 0.74 (0.71–0.76) 1.94e–27 0.88 EUR ≠ AFR ≠ EAS

rs13013510 60 (2356) 0.51 (0.47–0.54) 0.19 (0.15–0.22) 0.65 (0.62–0.69) 5.91e–26 0.87 EUR ≠ AFR ≠ EAS

rs691414 60 (2356) 1.00a (0.98–1.02) 1.00a (0.98–1.02) 0.78 (0.76–0.79) 1.31e–28 0.89 AFR ≠ EUR and EAS

rs692290 60 (2356) 1.00a (0.98–1.02) 1.00a (0.98–1.02) 0.60 (0.58–0.62) 2.20e–42 0.96 AFR ≠ EUR and EAS

CYP2R1

rs16930625 60 (2356) 0.08a (0.06–0.11) 0.12a,b (0.10–0.15) 0.19b (0.17–0.21) 1.03e–07 0.41 AFR ≠ EUR

rs11023374 60 (2342) 0.28 (0.26–0.31) 0.09a (0.06–0.11) 0.02a (− 0.01–0.04) 1.35e–20 0.79 EUR ≠ AFR and EAS

*Frequency values notated with the same letter are not significantly different from each other
#EUR ≠ AFR ≠ EAS; allelic frequency differed between all geographic groups, EUR ≠ AFR and EAS; allelic frequency differed between EUR and both AFR and EAS,
AFR ≠ EUR and EAS; allelic frequency differed between AFR and both EUR and EAS, allelic frequency differed between AFR and EUR.
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data for the RXRα variants were only available for 44–46
of the 60 included sample sets, and unavailable data
were mostly from EUR and AFR sample sets, so this
may have influenced results.

Discussion
This study demonstrates that variant frequency in mul-
tiple vitamin D-associated genes (VDR, RXRα, RXRγ,
GC, CYP2R1, CYP27B1, CYP24A1, CYP11A1 and
DHCR7/NADSYN1) varies by environmental UVB and
ancestry. For many SNPs, frequency followed a trend to
either decrease or increase in geographic regions of in-
creasing environmental UVB. However, several SNPs
displayed a population-specific pattern that cannot be
explained by changes in UVB levels alone. This provides
insights into the extent to which vitamin D regulation
differs by cohort, and may have consequences for public
health recommendations and disease outcomes.
The reported geographic patterns in the frequency of

SNPs in CYP genes and RXRα are novel findings. Whilst
such variants have been examined previously in differing
cohorts, details into how the distribution of these vari-
ants differs by ancestry has not been highlighted.
CYP2R1 and CYP27A1 enzymatically activate vitamin D,

and formation of the excretory form is enzymatically
regulated by CYP24A1. CYP11A1 is highly expressed in
the skin and represents an important alternative vitamin
D metabolism pathway [3, 22]. As such, genetic variance
in these pathways may influence vitamin D status and
homeostasis.
Multiple RXRα variants displayed similar frequencies

in EUR and EAS populations, potentially related to a
broad reduction in UVB in Europe and East Asia com-
pared to Sub-Saharan Africa. RXR are the most common
subunit forming heterodimers with VDR, but little is
known about the influence of RXR variants on vitamin D
activity [23]. Expression of the RXRα subtype is particu-
larly high in skin, and therefore SNPs could be of func-
tional relevance to UVB-induced vitamin D activity [24,
25]. However, other UVB-related roles of retinoids and
vitamin A derivatives in the skin should be considered,
including involvement in circadian rhythm and photo-
protection [26].
DHCR7/NADSYN1, VDR, RXRγ, CYP2R1, CYP24A1

and CYP11A1 variants did not display clear patterns of
geographic distribution, likely reflecting diverse func-
tional consequences. However, the majority of examined
variants reside within introns or untranslated regions.

Table 4 Frequency of VDR, RXRα and RXRγ variants in EUR, EAS and AFR groups

Sample
sets (subjects)

Mean allelic frequency (95% CI)* Distribution
pattern#EUR EAS AFR p r2

VDR

rs886441 60 (2356) 0.18 (0.16–0.21) 0.05 (0.02–0.07) 0.41 (0.38–0.43) 1.66e–27 0.88 EUR ≠ AFR ≠ EAS

rs2283342 60 (2356) 0.26 (0.22–0.29) 0.49 (0.43–0.55) 0.00 (− 0.04–0.05) 6.70e–19 0.76 EUR ≠ AFR ≠ EAS

rs2107301 60 (2356) 0.32 (0.29–0.35) 0.67 (0.63–0.70) 0.13 (0.10–0.16) 1.91e–30 0.91 EUR ≠ AFR ≠ EAS

rs4334089 60 (2356) 0.73 (0.68–0.77) 0.57 (0.52–0.61) 0.35 (0.30–0.39) 1.95e–16 0.71 EUR ≠ AFR ≠ EAS

rs4516035 60 (2355) 0.43 (0.41–0.45) 0.03a (0.00–0.05) 0.03a (0.01–0.05) 3.68e–34 0.93 EUR ≠ AFR and EAS

RXRα

rs1805343 45 (1853) 0.66a (0.63–0.69) 0.65a (0.63–0.68) 0.17 (0.14–0.19) 6.81e–29 0.95 AFR ≠ EUR and EAS

rs1805352 44 (1822) 0.69a (0.66–0.72) 0.75a (0.72–0.78) 0.26 (0.23–0.29) 2.82e–27 0.95 AFR ≠ EUR and EAS

rs10881582 46 (1881) 0.74a (0.71–0.77) 0.81a (0.78–0.83) 0.25 (0.22–0.28) 1.04e–30 0.96 AFR ≠ EUR and EAS

rs3118571 45 (1854) 0.65a (0.62–0.68) 0.69a (0.66–0.72) 0.12 (0.09–0.15) 9.27e–30 0.96 AFR ≠ EUR and EAS

rs3818740 45 (1853) 0.40a,b,c (0.29–0.52) 0.43a,b,c (0.32–0.53) 0.59a,b,c (0.48–0.70) 3.85e–02 0.10 -

rs731516 45 (1852) 1.00a (0.98–1.02) 1.00a (0.98–1.02) 0.59 (0.57–0.61) 1.20e–31 0.96 AFR ≠ EUR and EAS

rs7040434 45 (1854) 0.00a (− 0.01–0.02) 0.00a (− 0.01–0.01) 0.53 (0.52–0.54) 4.26e–44 0.99 AFR ≠ EUR and EAS

RXRγ

rs283695 60 (2356) 0.44 (0.40–0.47) 0.77a (0.73–0.80) 0.85a (0.82–0.89) 8.45e–25 0.85 EUR ≠ AFR and EAS

rs12069160 60 (2356) 0.94a (0.92–0.96) 0.65 (0.62–0.67) 0.92a (0.90–0.95) 2.69e–24 0.85 EAS ≠ AFR and EUR

rs10800098 60 (2345) 0.05a (0.02–0.08) 0.33 (0.30–0.36) 0.03a (0.00–0.06) 8.40e–21 0.80 EAS ≠ AFR and EUR

rs10489745 60 (2343) 0.09a (0.07–0.12) 0.42 (0.40–0.45) 0.03a (0.01–0.05) 3.57e–33 0.92 EAS ≠ AFR and EUR

*Frequency values notated with the same letter are not significantly different from each other
#EUR ≠ AFR ≠ EAS; allelic frequency differed between all geographic groups, EUR ≠ AFR and EAS; allelic frequency differed between EUR and both AFR and EAS,
AFR ≠ EUR and EAS; allelic frequency differed between AFR and both EUR and EAS, EAS ≠ AFR and EUR; allelic frequency differed between EAS and both EUR
and AFR
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Table 5 Vitamin D-associated variants included in the study

Gene/loci ID number Fixation index Minor allele frequency Variant allele Function class#

CYP11A1 rs11632698 0.18 0.35 G Intron

rs2073475 0.13 0.38 A nearGene-5

CYP24A1 rs3787557 0.13 0.12 C Intron

rs927650 0.14 0.34 T Intron

rs912505 0.14 0.39 G Intron

rs2762929 0.15 0.39 T Intron

rs4809956 0.18 0.40 C* Intron

CYP27A1 rs7568196 0.14 0.25 A Intron

rs4674338 0.17 0.25 G Intron

rs13013510 0.18 0.43 G Intron

rs691414 0.30 0.06 C Intron

rs692290 0.38 0.11 G Intron

CYP2R1 rs16930625 0.14 0.15 G 5′ Prime UTR

rs11023374 0.17 0.17 C Intron

DHCR7/NADSYN1 rs3750997 0.16 0.42 T* Intron

rs1790325 0.18 0.26 A Intron

rs11603330 0.18 0.35 A Intron

rs7928249 0.20 0.42 A* nearGene-5

rs12800438 0.16 0.40 G* Intron

rs7944926 0.22 0.35 A Intron

rs3794060 0.23 0.35 T Intron

rs12280295 0.53 0.05 C Intron

GC rs7041 0.14 0.38 G Missense

rs4364228 0.14 0.17 G Intron

rs222047 0.16 0.38 G Intron

rs3737549 0.16 0.10 T Intron

rs222016 0.17 0.34 A* Intron

rs222020 0.17 0.34 T* Intron

rs843006 0.19 0.36 G Intron

rs705117 0.25 0.42 A Intron

RXRα rs1805343 0.16 0.48 A Intron

rs1805352 0.16 0.47 A* Intron

rs10881582 0.18 0.38 G* Intron

rs3118571 0.19 0.48 A Intron

rs3818740 0.20 0.38 T* Intron

rs731516 0.43 0.11 A Intron

rs7040434 0.51 0.15 C Intron

RXRγ rs283695 0.14 0.34 A Intron

rs12069160 0.15 0.14 T Intron

rs10800098 0.16 0.12 A Intron

rs10489745 0.17 0.17 C Intron

VDR rs886441 0.13 0.23 C Intron

rs2283342 0.13 0.19 C Intron

rs2107301 0.16 0.34 T Intron
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Therefore, linkage disequilibrium of these variants with
nearby functional variants needs to be considered.
It was hypothesised that selection of vitamin D-related

SNPs would parallel geographic selection for skin pig-
mentation. The reported associations support this and
indicate vitamin D SNPs display population-specific pat-
terns, with genetic differences observed between popula-
tions which did not reflect increases and/or decreases in
ancestral UVB environments. These population-specific
patterns could coincide with migration patterns, as in
the case of variants underlying skin pigmentation [14,
15] and support a link between vitamin D and the evolu-
tion of lighter skin, with further examination into this
association warranted. Notably, evidence of positive se-
lection for DHCR7/NADSYN1 variants has been re-
ported; however, evidence of selection was not found for
other examined vitamin D-related genes (CYP2R1 and
GC), possibly due to selection taking place at an earlier
time than examined, and/or in other vitamin D-
associated genes, such as CYP27B1, CYP24A1 or VDR.
Many of the reported associations support previously

reported frequency patterns in GC, VDR and DHCR7/
NADSYN1 variants [6, 7, 27, 28]. GC rs7041 is a genetic
determinant of vitamin D status, with a negative associ-
ation between frequency and latitude reported [28, 29].
Here, similar latitudinal/UVB clines for several add-
itional GC variants were observed. Of these, rs705117
and rs222020 have been linked to vitamin D status [30,
31]. Latitudinal clines in VDR SNPs have been observed,
although these associations were limited to the Africa-
Europe axis [6–8]. Potential latitudinal clines exist for
several VDR variants examined here along this axis, but
not when considering the East Asian populations. Sev-
eral examined DHCR7/NADSYN1 variants (rs12800438,
rs7944926, rs3794060, rs12280295) are part of a large
haplotype block previously noted to have high frequency
in Europeans and North East Asians [27]. Here multiple
additional variants in this locus that differed in fre-
quency between populations that may be functionally
relevant were identified.
Strengths of this study include the collation of numer-

ous cohorts from three genetically distinct populations
exposed to differing UVB regimes and the simultaneous
examination of multiple vitamin D-associated variants.
However, the analysis was limited by data availability.
Furthermore, the inclusion of multiple cohorts from the
same area (e.g. multiple Italian and Han cohorts) might

have resulted in over-representation of sub-populations
in derived geographic groups.
This data is interesting from a human evolution per-

spective but also has relevance for public health recom-
mendations and understanding disease risk. Vitamin D
insufficiency is more likely in darker-skinned individuals,
attributed to diminished synthesis of the vitamin due to
pigmentation [5, 32, 33]. However, variants displaying
apparent interethnic differences in frequency may also
contribute to population differences in vitamin D status,
and therefore current global and national dietary recom-
mendations for this vitamin may not meet the needs of
all populations equally. Further, numerous SNPs in vita-
min D pathways have been identified as risk factors for
multiple adverse health conditions [1, 4]. Given that
variant frequency appears to vary by ancestry, disease
risk factors could be population specific. A further possi-
bility is that risks conferred by vitamin D SNPs may
change depending on environmental factors, such as
UVB exposure, with these concepts requiring further
examination.

Conclusions
This study reports population differences for gene vari-
ants within multiple vitamin D-related loci that have not
been explored previously. A key finding was that the fre-
quency of many of these vitamin D variants are
population-specific, and do not reflect changes in ances-
tral UVB environments. These population differences
provide insight into the extent to which vitamin D me-
tabolism and activity may vary between populations of
different ancestry via genetic variance in numerous vita-
min D-related genes. Given multiple SNPs within exam-
ined loci have been identified as disease risk factors,
further examination of identified gene variants displaying
interethnic differences in frequency and their potential
relevance to disease outcomes is warranted.

Methods
NCBI 1000 Genomes Browser [34] and ALFRED (Allele
Frequency Database) [35] databases were searched for vari-
ants in vitamin D-related genes; VDR; encoding for the vita-
min D receptor; RXRα, RXRβ, and RXRγ; retinoid X
receptor subtypes, GC; vitamin D binding protein, CYP2R1,
CYP24A1, CYP11A1, CYP27A1 and CYP27B1; vitamin D
hydroxylases, and DHCR7/NADSYN1; 7-dehydrocholes
terol reductase/NAD(+) synthetase (examined together due

Table 5 Vitamin D-associated variants included in the study (Continued)

Gene/loci ID number Fixation index Minor allele frequency Variant allele Function class#

rs4334089 0.17 0.41 G* Intron

rs4516035 0.18 0.18 C 2KB upstream

*Indicates the variant allele was also the major allele
#Functional class recorded and defined by dpSNP—see www.ncbi.nlm.nih.gov/variation/docs/glossary/
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Table 6 Sample sets in derived EUR, EAS and AFR geographic
groups

Europeans (EUR)

ALFRED

Sample set n Latitude^ Sample ID# Data
source*

Danes 51 55.0–58.0° N SA000007H [35]

Finns 36 60.0–75.0° N SA000018J [35]

Orcadian 16 59.0° N SA001508O [36]

Irish 116 51.0–56.0° N SA000057M [35]

French 28 46.0° N SA001503J [36]

Basque (France) 24 43.0° N SA001504K [36]

Hungarians 92 45.5–48.5° N SA002023H [35])

Italian (Tuscan) 8 43.0° N SA001507N [36]

Italian (Bergamo) 14 46.0° N SA002255O [36]

Sardinian 28 40.0° N SA001505L [36]

Russians (Vologda) 25 61.0° N SA001510H [36]

Russians (Archangel’sk) 34 63.0–64.5° N SA001530J [35]

Chuvash 42 54.5–56.5° N SA000491O [35]

Adygei (Krasnodar) 54 44.0–45° N SA000017I [8]

1000 Genomes

British from England and
Scotland (GBR)

91 49.8–59.5° N

Finnish in Finland (FIN) 99 60.0–75.0° N

Iberians in Spain (IBS) 107 36.0–43.5° N

Toscani in Italia (TSI) 107 38.0–47.0° N

Total 972

East Asians (EAS)

ALFRED

Sample set n Latitude Sample ID# Data
source*

Ami (Taiwan) 40 22.5–24.0° N SA000002C [35]

Atayal (Taiwan) 41 21.8–25.5° N SA000021D [35]

Dai (China) 10 21.0° N SA001493R [36]

Daur (China) 10 48.0–49.0° N SA001488V [36]

Han (China) 45 36.0–39.0° N SA001483Q [36]

Hezhen (China) 10 47.0–48.0° N SA001490O [36]

Japanese 29 38.0° N SA002260K [36]

Koreans 53 34.5–43.0° N SA003027M [35]

Lahu (China) 10 22.0° N SA001494S [36]

Miao (China) 10 28.0° N SA001486T [36]

Naxi (China) 10 26.0° N SA001496U [36]

Oroqen (China) 10 48.0–53.0° N SA001487U [36]

She (China) 10 27.0° N SA001495T [36]

Tu (China) 10 36.0° N SA001497V [36]

Tujia (China) 10 29.0° N SA001484R [36]

Uygur (China) 10 44.0° N SA001492Q [36]

Table 6 Sample sets in derived EUR, EAS and AFR geographic
groups (Continued)

Xibo (China) 9 43.0–44.0° N SA001491P [36]

Yizu (China) 10 28.0° N SA001485S [36]

Hakka (Taiwan) 43 22.0–35.0° N SA000003D [35]

Mongolian (China) 10 SA001489W [36]

1000 Genomes

Chinese Dai in
Xishuangbanna, China (CDX)

93 21.0–28.0° N

Han Chinese in Beijing,
China (CHB)

103 22.0–40.0° N

Han Chinese South,
China (CHS)

105 22.0–40.0° N

Japanese in Tokyo,
Japan (JPT)

104 30.0–46.0° N

Total 795

Sub-Saharan Africans (AFR)

ALFRED

Sample set n Latitude Sample ID# Data
source*

Bantu (SA) 8 22.0–29.0° S SA001818S [36]

Bantu (Kenya) 12 3.0° S SA001819T [36]

San (Nambia) 7 21.0° S SA001469U [36]

Biaka (C. African Republic) 35 4.0° N SA001465Q [36]

Hausa (Nigeria) 39 7.0–18.0° N SA000100B [35]

Ibo (Nigeria) 48 5.0–7.0° N SA000099S [35]

Mbuti (Demographic
Republic of the Congo)

19 1.0° N SA004361O [35]

Yoruba (Nigeria) 25 6.0–10.0° N SA001468T [36]

Chagga (Tanzania) 45 2.5–3.5° S SA000487T [35]

Masai (E Africa) 22 1.0° N–6.0°
S

SA000854R [35]

Sandawe (Tanzania) 39 4.0–7.0° S SA004366T [35]

Zaramo (Tanzania) 39 4.0–11.0° S SA004367U [35]

Mandenka (Senegal) 24 12.0° N SA001467S [36]

1000 Genomes

Esan in Nigeria (ESN) 99 4.0–12.0° N

Gambian in Western
Division, Mandinka (GWD)

113 7.0–23.0° N

Yoruba in Ibadan, Nigeria
(YRI)

108 6.0–10.0° N

Luhya in Webuye, Kenya
(LWK)

99 1.0° N–3.0°
S

Mende In Sierra Leone
(MSL)

85 4.0–10° N

Total 866
#Sample IDs relate to only sample sets collated from ALFRED database
*Source of sample sets collated from ALFRED; either original sample sets (i.e.
only published on ALFRED by the host (Kidd KK.)) [8], or HGDP-CEPH
samples [10]
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their close positioning on the genome). Genotypic data was
available for 170 variants in these genes. Variants were
ranked by population differentiation, using fixation
indices (FST) provided by ALFRED. Variants with
the highest FST (top 30%; FST ≥ 0.13) were included
in analyses, resulting in the inclusion of 51 variants
in eight loci. A further four variants with unknown
functional consequences were excluded (as per
dbSNP - www.ncbi.nlm.nih.gov/snp), resulting in the
analysis of 46 variants in VDR, RXRα, RXRβ, GC,
CYP2R1, CYP24A1, CYP11A1 and DHCR7/NADSYN1
(Table 5). No RXRβ or CYP27B1 variants fit the in-
clusion criteria.
Allelic frequencies of included variants were grouped

based on European (EUR), East Asian (EAS) or Sub-
Saharan African (AFR) ancestry and current residence
(Table 6). The United Nations (UN) Geoscheme [37]
was used to define the populations included in EUR,
EAS and AFR groups. An adjustment was made to in-
clude only European Russia in Eastern Europe; defined
as the western part of the Russian Federation bordered
by the Ural Mountains range [38].
Multiple sample sets from a defined population (e.g.

Han Chinese) were included provided there was suffi-
cient evidence they were not duplicates. In the case of
duplicates, the most recent data was used. Only sample
sets with available genotypic data for all variants used to
validate ancestry (described below) were included. Sup-
plementary material 1 outlines available data for each
vitamin D-related variant.
Latitude and longitude were recorded for all sample

sets. EUR, EAS and AFR groups represented differing
latitudinal ranges, with a range of 75° N–38° N for EUR,
49° N–21° N for EAS, 18° N–29° S for AFR (Table 6).
These coordinates were used to collect information on
the UVB levels in the three geographical regions follow-
ing previously published methods [39]. Daily noontime
surface irradiance data for 305 nm (Mw/m2/nm) was
collected from the NASA Nimbus-7 Total Ozone
Mapping Spectrometer for the total available period (15
years; 1978–1993), accessed via NASA’s web application,
Giovanni [40]. Data was collected for UVB cells covering
a half-degree latitude by longitude area within sample
set locations and then used to calculate mean UVB levels
for sample set location and then for each geographic re-
gion. The 305 nm wavelength was chosen as this was
the shortest and most relevant of published available
wavelengths to vitamin D UVB-synthesis [2]. Further in-
formation on UVB data collected for sample sets can be
found in the supplementary material 1.
Allelic frequencies of three skin pigmentation-related

variants, SLC24A5 rs1426654, SLC45A2 rs16891982 and
OCA2 rs1800414, were used to assess if derived geo-
graphic groups accurately represented geographic regions

with distinct ancestral skin pigmentation [20, 21]. The
mean allelic frequencies for derived geographic groups
were compared against previously reported frequencies
for European, East Asian and Sub-Saharan originating
populations. rs1426654 and rs16891982, previously re-
ported to be fixed in Europeans (frequency < 0.90) and ab-
sent in East Asians and Africans [20], were used here to
validate EUR. rs1800414 is limited to East Asians popula-
tions (frequency 0.50–0.60) and absent elsewhere, and was
used to differentiate EAS from AFR [21].
Association between geographic groups and frequency

of the variant allele for each polymorphism was analysed
by least squares regression to generate p values and ad-
justed r2 values. Categorical comparisons of mean allele
frequency between geographic groups were made using
ANOVA (Tukey’s post hoc test). Analyses were weighted
by cohort sizes. The p value threshold was adjusted for
multiple testing using the Bonferroni method [41] to p <
0.001 for associations between variants and geographic
region and p < 0.0001 for multiple comparisons between
regions. Statistical analyses were performed using JMP
(V13; SAS Institute Inc., Cary, NC, USA).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12263-020-00663-3.

Additional file 1: Supplementary material 1. Further information on
which cohorts gave data for each vitamin D-related variant and on UVB
data collected for sample set locations.
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