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Abstract

Background: Angiopoietin-like protein 3 (ANGPTL3), a liver-derived protein, plays an important role in the lipid and
lipoprotein metabolism. Using data available from the DiOGenes study, we assessed the link with clinical
improvements (weight, plasma lipid, and insulin levels) and changes in liver markers, alanine aminotransferase,
aspartate aminotransferase (AST), adiponectin, fetuin A and B, and cytokeratin 18 (CK-18), upon low-calorie diet
(LCD) intervention. We also examined the role of genetic variation in determining the level of circulating ANGPTL3
and the relation between the identified genetic markers and markers of hepatic steatosis.

Methods: DiOGenes is a multicenter, controlled dietary intervention where obese participants followed an 8-week
LCD (800 kcal/day, using a meal replacement product). Plasma ANGPTL3 and liver markers were measured using
the SomaLogic (Boulder, CO) platform. Protein quantitative trait locus (pQTL) analyses assessed the link between
more than four million common variants and the level of circulating ANGPTL3 at baseline and changes in levels
during the LCD intervention.

Results: Changes in ANGPTL3 during weight loss showed only marginal association with changes in triglycerides
(nominal p = 0.02) and insulin (p = 0.04); these results did not remain significant after correcting for multiple testing.
However, significant association (after multiple-testing correction) were observed between changes in ANGPTL3
and AST during weight loss (p = 0.004) and between ANGPTL3 and CK-18 (baseline p = 1.03 × 10−7, during weight
loss p = 1.47 × 10−13). Our pQTL study identified two loci significantly associated with changes in ANGPTL3. One of
these loci (the APOA4-APOA5-ZNF259-BUD13 gene cluster) also displayed significant association with changes in
CK-18 levels during weight loss (p = 0.007).

Conclusion: We clarify the link between circulating levels of ANGPTL3 and specific markers of liver function. We
demonstrate that changes in ANGPLT3 and CK-18 during LCD are under genetic control from trans-acting variants.
Our results suggest an extended function of ANGPTL3 in the inflammatory state of liver steatosis and toward liver
metabolic processes.
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Background
The metabolic syndrome is a cluster of risk factors that
increases the risk of diseases such as type 2 diabetes,
hypertension, hyperlipidemia, and non-alcoholic fatty
liver disease. The prevalence of the metabolic syndrome
increases due to a parallel rise in the occurrence of obes-
ity and insulin resistance [1]. This highlights the need
for a more detailed understanding of the underlying
molecular mechanisms.
One of the key components in the etiology of the

metabolic syndrome is dyslipidemia. Angiopoietin-like
proteins (ANGPTLs) have been reported to be involved
in the regulation of lipid metabolism [2]. The human
gene of angiopoietin-like protein 3 (ANGPTL3) is
located on chromosome 1 and encodes one of several
structurally similar secreted glycoproteins in the
ANGPTL family. The ANGPTLs consists of a signal
sequence at the N-terminal followed by an α-helical
region forming coiled coil domains, and a fibrinogen-
like domain at the C-terminal. ANGPTL8 differs in
structure, as it lacks a C-terminal fibrinogen-like
domain. ANGPTL3 is found in plasma both as a native
protein and in cleaved form [2, 3]. The coiled coil
domains at the N-terminal decrease the hydrolysis of
plasma triglyceride (TG) through inhibition of lipopro-
tein lipase (LPL) activity and thereby affect the lipid and
lipoprotein metabolism [4]. ANGPTL3 is predominantly
expressed in the liver and is secreted by the liver both in
mice and in humans [5, 6]. ANGPTL3 deficiency results
in a dramatic reduction of the plasma concentration of
TG and cholesterol [5, 7], and loss of function mutations
in ANGPTL3 are the cause of a recessive form of familial
combined hyperlipidemia [8].
In addition to stimulation of lipolysis, ANGPTL3 may

be a determining factor in increasing hepatic lipid stor-
age and affecting free fatty acid (FFA)-induced insulin
resistance. One study reported a positive association
between circulating ANGPTL3 and non-alcoholic stea-
tohepatitis (NASH) [9]. Altogether, ANGPTL3 may be
involved in the pathogenesis of the metabolic syndrome
and increase the risk of hepatic steatosis.
This study examines the role of ANGPTL3 in lipid

metabolism and liver health in the DiOGenes (Diet,
Obesity and Genes) study. The DiOGenes study was a
randomized, controlled dietary intervention that showed
that a reduction in the glycemic index (GI) and an in-
crease in dietary protein content led to an improvement
in weight maintenance after an 8-week low-calorie diet
(LCD) weight loss in adults [10]. In this study, we first
analyze ANGPTL3 concentration in relation to body
mass index (BMI), lipid profile, and markers of hepatic
steatosis before and during weight loss. Afterwards, we
identified genetic variants determining variations of cir-
culating ANGPTL3 level through protein quantitative
trait locus (pQTL) analysis and tested their association
to ANGPTL3-related covariates.

Methods
Study design
The DiOGenes study (registered at http://www.clinical-
trials.gov, NCT00390637) was an intervention study car-
ried out in eight European centers (Bulgaria, the Czech
Republic, Denmark, Germany, Greece, the Netherlands,
Spain, and the UK). The primary purpose was to exam-
ine the effects of dietary protein and GI on weight regain
and metabolic and cardiovascular risk factors in over-
weight and obese families [10–12]. The study included
families with at least one overweight or obese parent less
than 65 years of age. The participants aimed to lose ≥
8% of their initial body weight during 8 weeks of a LCD
(800 kcal/day with additional use of 200 g of vegetables/
day). Subjects achieving ≥ 8% weight loss were included
in a 6-month weight maintenance period. Here, the par-
ticipants were randomized to one of four ad libitum
diets differing in GI and dietary protein content or a
control diet following the national dietary guidelines in
each of the countries [11].

Ethics
The study was approved by the different local ethical
committees. Written informed consent was obtained
from all participants, and the study was performed in
accordance with the Declaration of Helsinki.

Clinical measurements
In the study, height was measured at the initial screening
visit. Body weight was measured on all of the clinical in-
vestigation days together with fasting blood sampling.
Total cholesterol, high-density lipoprotein cholesterol
(HDL-C), TG, fasting glucose, and insulin were analyzed
at the Research Laboratory, Department of Clinical
Biochemistry, Gentofte University Hospital, Denmark.
Low-density lipoprotein cholesterol (LDL-C) was calcu-
lated according to Friedewald’s equation [13].

Proteomics analyses
Plasma concentrations of ANGPTL3, alanine amino-
transferase (ALT), aspartate aminotransferase (AST),
adiponectin, fetuin A, fetuin B, and cytokeratin 18
(CK-18) were quantified before and after the LCD inter-
vention using a multiplexed aptamer-based proteomic
technology developed by SomaLogic Inc. (Boulder, CO)
and measured as relative fluorescence units (RFU)
[14, 15]. Data was normalized and calibrated by
SomaLogic™ according to standard operating proce-
dures [16]. This was done to remove systematic biases
and correct plate-to-plate variation. Additional post-
processing steps removed subjects with potential cell
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lyses as indicated with high hemoglobin levels (> 9 × 105

RFU) and outliers as detected with principal component
analyses. Proteins were also checked for outliers and
proportion of missing values before log transformation for
analysis [17]. Data were available for 1129 proteins in 512
DiOGenes participants. Protein change during the weight
loss intervention was computed as the log2 fold change
between the end and the beginning of the intervention.

Genotyping
DNA was extracted from EDTA blood buffy coats with a
salting out method. The DNA samples were quality
checked, quantified, and normalized to approximately
100 ng/ml and 2.0 mg before genotyping. Genotyping
was done using Illumina 660 W-quad according to manu-
facturer’s protocols (Illumina, San Diego, CA). Detailed in-
formation about this dataset can be found in Carayol et al.
[17]. Briefly, 498,233 single nucleotide polymorphisms
(SNPs) were genotyped; after quality check, additional
SNPs were imputed using the Michigan Imputation Server
[18] and the European 1000 Genomes set reference panel.
SNP information was mapped onto NCBI version 37.
Information was available for 4,020,654 SNPs in 494 par-
ticipants with proteomics data.

QTL mapping
A complete description of the QTL mapping is available
in Carayol et al. [17]. In summary, association between
SNPs and circulating ANGPTL3 was tested at baseline
and during weight loss using linear mixed effect models
as implemented in GCTA software adjusting for baseline
BMI or change in BMI, center, age, and gender as fixed,
and a genetic relationship matrices as random effect [19].
In order to handle the multiple comparisons, p values
were corrected using SLIDE (Sliding-window method for
Locally Inter-correlated markers with asymptotic Distribu-
tion Errors corrected), a method based on a multivariate
normal distribution similar to classical permutation but
much faster [20]. Considering the large number of tests
performed, significance levels were defined at adjusted
alpha 10%. Genomic inflation factors (GIF) were estimated
for the two pQTL analyses using estlambda function
available in the GenABEL R package [21]. Pairwise linkage
disequilibrium (LD) was calculated with LDlink, a web-
based application using 1000 Genome phase 3 data [22].

Statistical analyses
Association between circulating ANGPTL3 and clinical
variables (BMI, fasting glucose and insulin levels, total
lipid levels, C-reactive protein (CRP) levels) was per-
formed using a linear model, adjusting for center, age,
gender, and baseline BMI. SNP effects were tested as
additive effects. In the analyses of data from the weight
loss period, models were adjusted for change in BMI.
Adjustment for multiple testing was performed applying
a Bonferroni correction considering tests performed on
data available at baseline and during the LCD interven-
tion separately. Statistical analyses were performed using
R version 3.2.3.

Results
Baseline characteristics
In total, 769 participants from the DiOGenes study were
included in the analyses. The baseline characteristics are
described in Table 1 and have been extensively discussed
in previous DiOGenes publications [10, 23, 24]. Briefly,
participants were on average 41 years of age, with base-
line BMI of 34.5 ± 4.9 kg/m2 (mean ± sd) and were non-
diabetics (mean glucose levels = 5.12 ± 0.74 mmol/l and
insulin levels = 11.48 ± 8.57 μIU/ml). After the weight
loss period, the average BMI was decreased to 30.7 ± 4.
5 kg/m2, and glycemic profiles improved to 4.82 ± 0.
54 mmol/l for fasting glucose and 8.15 ± 6.12 μIU/ml for
insulin.

Circulating ANGPTL3 and clinical measurements
During the weight loss period, ANGPTL3 plasma concen-
tration was marginally associated with weight loss (p = 0.
056, see Table 2). Furthermore, ANGPTL3 concentration
was positively associated with TG concentration (p = 0.02)
and with fasting insulin levels (p = 0.04). For both variables,
the associations were independent of weight loss. However,
these associations were not significant after adjustment for
multiple testing. For other variables (total cholesterol,
HDL-C, LDL-C, FFA, glucose, and CRP), there were no sig-
nificant associations between ANGPTL3 and their concen-
tration at baseline or changes during the weight loss period
(Table 2).

Circulating ANGPTL3 and liver markers
The association between ANGPTL3 and plasma levels of
specific liver markers (AST, ALT, adiponectin, fetuin A
and B, and CK-18) were tested (Table 3). We observed a
strong positive association between circulating
ANGPTL3 and CK-18 both at baseline (p = 1.03 × 10−7)
and during the weight loss period (p = 1.47 × 10−13).
Significant association was also seen between changes in
AST and ANGPTL3 levels during weight loss
intervention (p = 0.004). All these associations remained
significant, even after adjustment for multiple testing.
During weight loss, adiponectin displayed marginal
association with ANGPTL3 (with nominal p value = 0.
03; Bonferroni-adjusted p value = 0.18 and FDR-adjusted
p value = 0.06).

ANGPTL3 pQTL analyses
Furthermore, we investigated the possible link between
circulating ANGPTL3 levels (at baseline and changes



Table 1 Participant characteristics

Variable Baseline Change during weight loss

n Mean ± sd n Mean ± sd

Gender (M/F) 769 263/506 – –

Age (years) 769 41.28 ± 6.22 – –

BMI (kg/m2) 762 34.54 ± 4.88 638 3.80 ± 1.12

Total cholesterol (mmol/l) 714 4.89 ± 1.01 620 0.66 ± 0.76

HDL-C (mmol/l) 716 1.20 ± 0.33 624 0.08 ± 0.23

LDL-C (mmol/l) 711 3.07 ± 0.88 616 0.45 ± 0.64

TG (mmol/l) 705 1.35 ± 0.65 611 0.31 ± 0.58

FFA (μmol/l) 630 654.9 ± 333.2 545 − 55.3 ± 368.4

Glucose (mmol/l) 701 5.12 ± 0.74 606 0.29 ± 0.60

Insulin (μIU/ml) 683 11.48 ± 8.57 541 3.89 ± 5.60

CRP (mg/l) 698 4.30 ± 3.90 594 1.05 ± 2.55

ANGPTL3 (RFU) 567 349.2 ± 122.0 539 1.74 ± 85.8

ALT (RFU) 594 5493.6 ± 2399.9 543 6.55 ± 204.3

AST (RFU) 594 7867.6 ± 2581.6 543 − 0.93 ± 218.5

Adiponectin (RFU) 594 1430.8 ± 555.4 543 − 0.87 ± 196.7

Fetuin A (RFU) 594 1029.2 ± 190.7 543 − 4.66 ± 213.7

Fetuin B (RFU) 594 4026.6 ± 1342.0 543 2.66 ± 128.9

CK-18 (RFU) 594 222.0 ± 916.1 543 − 4.08 ± 123.2

ALT alanine aminotransferase, ANGPTL3 angiopoietin-like protein 3, AST aspartate aminotransferase, BMI body mass index, CK-18 cytokeratin 18, CRP C-reactive protein,
FFA free fatty acids, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, sd standard deviation, TG triglycerides
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during LCD) and genetic markers. We thus per-
formed genome-wide pQTL analyses testing more
than 4 million common variants (see the “Methods”
section). The results are shown as Manhattan plots
in Figs. 1 and 2, respectively for the baseline and
LCD pQTLs. Baseline pQTL analysis did not high-
light any genome-wide significant signals (at adjusted
alpha < 0.10).
Table 2 Plasma ANGPTL3 and association with BMI and lipid profile

Variable Baseline

β (95%CI)

BMI (kg/m2) 0.00 (− 0.44;0.45)

Total cholesterol (mmol/l) 0.45 (− 1.75;2.69)

HDL-C (mmol/l) − 3.62 (− 10.4;3.67)

LDL-C (mmol/l) − 0.15 (− 2.60;2.37)

TG (mmol/l) 3.21 (− 0.34;6.89)

FFA (μmol/l) 0.01 (− 0.00;0.01)

Glucose (mmol/l) − 0.35 (− 3.67;3.08)

Insulin (μIU/ml) 0.10 (− 0.18;0.37)

CRP (mg/l) 0.28 (− 0.35;0.91)

Coefficient (β), corresponding 95% confidence intervals, and associated p value from a li
in percent with regard to results at baseline. Thus, an increase in ANGPTL3 of 1 RFU resu
adjusted for center, age, gender, and BMI. Models with data from the weight loss period
CI Confidence interval, CRP C-reactive protein, FFA free fatty acids, HDL-C high-dens
TG triglycerides
The top SNPs (with nominal p < 1 × 10− 4) are
presented in Table 4. However, in the LCD pQTL, three
variants were considered genome-wide significant
(Table 5). The two first SNPs, rs4360730 (NC_000011.9:
g.116488748T>C) and rs74234276 (NC_000011.9:g.
116488753G>A) are in perfect LD (R2 = 1) and localized
within an intergenic region located 120 kb downstream
from BUD13 gene (Fig. 3). This gene belongs to a gene
Weight loss period

p β (95%CI) p

0.986 6.39 (− 0.18;13.0) 0.056

0.691 6.29 (− 3.11;15.7) 0.189

0.322 − 21.2 (− 55.30;12.8) 0.221

0.906 4.81 (− 6.17;15.8) 0.390

0.077 15.7 (2.15;29.2) 0.023

0.134 0.00 (− 0.03;0.02) 0.728

0.839 − 8.13 (− 20.36;4.10) 0.193

0.485 1.54 (0.06;3.02) 0.042

0.383 1.89 (− 0.89;4.66) 0.183

near regression are provided. Data are presented as back-transformed β-coefficients
lts in β (95%CI) percent change of the given variable. The regression models were
were adjusted for the change in BMI due to the weight loss
ity lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol,



Table 3 Plasma ANGPTL3 and association with liver markers

Liver markers Function and association with liver steatosis Baseline Weight loss period

β (95%CI) p β (95%CI) p

ALT (RFU) Aminotransferase. High levels in liver. Marker of
hepatocellular damage (↑).

− 0.78 (− 2.88; 1.31) 0.463 0.02 (− 0.02; 0.05) 0.405

AST (RFU) Aminotransferase. High levels in the liver, heart,
and muscle (↑).

− 1.00 (− 3.04; 1.04) 0.336 − 0.05 (− 0.08; − 0.02) 0.004

Adiponectin
(RFU)

Induce hepatic fatty acid oxidation, inhibits fatty
acid synthesis, and suppress TNF-α production
in the liver (↓).

1.51 (− 0.53; 3.56) 0.150 0.04 (0.00; 0.08) 0.030

Fetuin A (RFU) Glycoprotein produced predominantly by the liver.
Inhibitor of the insulin receptor tyrosine kinase (↑).

− 0.97 (− 3.01; 1.06) 0.347 − 0.01 (− 0.04; 0.02) 0.551

Fetuin B (RFU) Shares 22% sequence similarity with fetuin A. Linked
to inflammation and insulin resistance (↑).

0.43 (− 1.70; 2.56) 0.692 0.03 (− 0.03; 0.08) 0.347

CK-18 (RFU) Activation of caspase 3 (apoptosis) results in cleavage
of CK-18, the major intermediate filament in hepatocytes (↑).

5.90 (3.82; 7.99) 1.03 × 10−7 0.21 (0.15; 0.26) 1.47 × 10−13

Coefficient (β), corresponding 95% confidence intervals, and associated p value from a linear regression are provided (in italics, p values passing Bonferroni correction).
Data are presented as back-transformed β-coefficients in percent with regard to results at baseline. Thus, an increase in ANGPTL3 of 1 RFU results in β (95%CI) percent
change of the given variable. In italics, p values passing Bonferroni correction (p < 0.05/6 = 0.0083). The regression models were adjusted for center, age, gender, and
BMI. Models with data from the weight loss period were adjusted for the change in BMI due to the weight loss
ALT alanine aminotransferase, AST aspartate aminotransferase, CI Confidence interval, CK-18 cytokeratin 18, RFU relative fluorescence units, TNF-α tumor necrosis
factor α
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cluster together with APOA4, APOA5, and ZNF259.
The third SNP, rs9994520 (NC_000004.11:g.
154882844G>C), is located 170 kb upstream from
SFRP2 gene (Fig. 4). For both pQTL analyses, no
significant p value inflation was observed (GIF were
1.00 and 0.99, respectively for baseline and weight
loss pQTL, Additional file 1: Figure S1 and
Additional file 2: Figure S2). This indicated no bias
due to population substructure.
Fig. 1 pQTL analysis of SNPs associated with circulating ANGPTL3 at baseli
ANGPTL3 at baseline. Each SNP is indicated by a black or a gray dot. They
level of statistical significance measured by the negative log of the corresp
association (p < 1 × 10−5)
Association between genetic markers and liver markers
Based on the pQTL results, rs4360730 and rs9994520
were chosen for further analysis. Specifically, we assessed
whether the two liver markers (CK-18 and AST) associ-
ated with ANGPTL3 levels were also under genetic
control. rs74234276 was not included due to complete
LD with rs4360730. Regarding the rs4360730 SNP, we
observed a significant association with CK-18 during
weight loss period (with nominal p = 0.007 and
ne. Manhattan plot of pQTL analysis of SNPs associated with circulating
are arranged by chromosomal location (x-axis). The y-axis illustrates the
onding p value for each SNP. The blue line represents suggestive



Fig. 2 pQTL analysis of SNPs associated with the change in circulating ANGPTL3 during weight loss. Manhattan plot of pQTL analysis of SNPs
associated with the change in circulating ANGPTL3 during weight loss. Each SNP is indicated by a black or a gray dot. They are arranged by
chromosomal location (x-axis). The y-axis illustrates the level of statistical significance measured by the negative log of the corresponding p value
for each SNP. The blue line represents suggestive association (p < 1 × 10−5)
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Bonferroni adjusted p = 0.028, see Additional file 3: Table
S1) and marginal association at baseline (p = 0.086).
Effect size per genotype groups are indicated in
Additional file 3: Table S1. Association tests with ALT
levels did not reveal any significant effect of rs4360730.
rs4360730 was not previously identified in published
Table 4 SNPs associated with circulating ANGPTL3 at baseline (p < 1

SNP Chr Position (bp) A1 A

rs36000763 6 48,687,252 A G

rs41528149 6 48,728,020 T C

rs13185453 5 166,370,819 A G

rs35976153 5 166,365,612 T C

rs12334611 8 37,045,986 C T

rs1277307 4 57,896,699 G T

rs76263326 14 76,627,919 C T

rs12100883 14 76,628,814 T C

rs1900121 14 76,629,481 T C

rs3783998 14 76,632,781 G T

rs4903381 14 76,635,675 C G

rs17521181 13 42,828,989 A T

rs4739476 8 37,046,991 A G

rs74528305 2 25,066,379 G T

rs74571086 8 37,049,958 G A

Results from the association between SNPs and ANGPTL3 level at baseline
A1 and A2 the minor and major alleles, bp basepair, Chr chromosome, Coef estimate
single nucleotide polymorphism
GWAs (EBI GWAs catalog, 01/01/2018 release) nor was
it previously identified as an eQTL SNP in GTEX (re-
lease 7) [25, 26]. For rs9994520, we did not observe any
significant association with CK-18 or ALT levels (at
baseline and changes during LCD, see Additional file 3:
Table S2).
× 10−5)

2 MAF Coef. se p value

0.064 0.202 0.041 1.06 × 10−6

0.065 0.200 0.041 1.20 × 10−6

0.143 0.143 0.030 1.73 × 10−6

0.146 0.136 0.029 3.34 × 10−6

0.072 0.182 0.040 4.35 × 10−6

0.097 0.162 0.035 4.36 × 10−6

0.100 0.151 0.033 5.12 × 10−6

0.100 0.151 0.033 5.12 × 10−6

0.100 0.151 0.033 5.12 × 10−6

0.101 0.151 0.033 5.26 × 10−6

0.100 0.151 0.033 5.67 × 10−6

0.089 0.164 0.036 5.69 × 10−6

0.070 0.184 0.041 6.33 × 10−6

0.077 0.177 0.039 6.57 × 10−6

0.070 0.184 0.041 7.97 × 10−6

d association coefficient, MAF minor allele frequency, se standard error, SNP



Table 5 SNPs associated with change in circulating ANGPTL3 during weight loss intervention (p < 1 × 10−5)

SNP Chr Position (bp) A1 A2 MAF Coef. se p value

rs4360730* 11 116,488,748 C T 0.057 0.166 0.032 2.48 × 10−7

rs74234276* 11 116,488,753 A G 0.057 0.166 0.032 2.48 × 10−7

rs9994520* 4 154,882,844 G C 0.304 0.084 0.016 2.93 × 10−7

rs113794502 20 23,631,539 G C 0.237 − 0.091 0.018 3.33 × 10−7

rs7661078 4 154,883,600 A G 0.302 0.083 0.016 3.78 × 10−7

rs55656752 20 23,631,510 A T 0.236 − 0.090 0.018 5.01 × 10−7

rs112213361 20 23,631,523 A G 0.236 − 0.090 0.018 5.01 × 10−7

rs73102376 20 23,633,232 T C 0.234 − 0.090 0.018 5.53 × 10−7

rs73102379 20 23,633,245 C T 0.234 − 0.090 0.018 5.53 × 10−7

rs73102363 20 23,631,599 G C 0.236 − 0.089 0.018 5.78 × 10−7

rs73102364 20 23,631,602 G A 0.236 − 0.089 0.018 5.78 × 10−7

rs73102366 20 23,631,654 T C 0.236 − 0.089 0.018 5.78 × 10−7

rs60143382 20 23,631,067 A G 0.236 − 0.090 0.018 5.84 × 10−7

rs55724037 20 23,631,068 C T 0.236 − 0.090 0.018 5.84 × 10−7

rs58578197 20 23,631,309 C T 0.236 − 0.090 0.018 5.84 × 10−7

rs112950650 20 23,632,409 G A 0.235 − 0.089 0.018 6.05 × 10−7

rs8116240 20 23,632,730 T C 0.235 − 0.089 0.018 6.05 × 10−7

rs8122969 20 23,632,847 C T 0.235 − 0.089 0.018 6.05 × 10−7

rs8124308 20 23,633,094 C T 0.235 − 0.089 0.018 6.17 × 10−7

rs8122922 20 23,632,776 C T 0.236 − 0.089 0.018 6.50 × 10−7

Results from the association between SNPs and ANGPTL3 protein level change during weight loss intervention
A1 and A2 the minor and major alleles, bp basepair, Chr chromosome, Coef estimated association coefficient, MAF minor allele frequency, se standard error, SNP
Single nucleotide polymorphism
*SNPs with adjusted p value < 0.10 upon the SLIDE (permutation) p value adjustments
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Discussion
In the current study, we addressed the link between cir-
culating ANGPTL3 levels and clinical improvements
(weight, plasma lipid, and insulin profile) during LCD in
a large clinical study. We assessed the link between
ANGPTL3 and liver markers (released in circulation),
and whether ANGPTL3 levels were under genetic
control. Finally, we investigated the contribution from
genetic markers modulating ANGPTL3 levels on liver
markers themselves.
We observed a positive association between circulating

ANGPTL3 and TG concentration following weight loss.
However, this association was modest and did not
remain, when correcting for multiple testing. In general,
results on the relationship between circulating
ANGPTL3 concentration and plasma lipids in humans
are inconsistent [27–32]. In contrast to what could be
expected, Robciuc and colleagues reported a negative
correlation between ANGPTL3 and TG concentration
[31]. This correlation did not remain significant after
adjusting for HDL-C and apolipoprotein concentrations.
A large study including 1770 participants of European
Caucasian ancestry did not observe a correlation
between plasma ANGPTL3 and concentration of TG
[32]. However, they did report positive correlations be-
tween ANGPTL3 concentrations and LDL-C, HDL-C,
and total cholesterol. Despite conflicting results con-
cerning the relationship between ANGPTL3 and lipid
parameters in humans, there is a consensus about the
physiological role of ANGPTL3 regarding inhibition of
LPL. But the functional evidence is derived from animal
studies [33, 34] and the exact inhibitory mechanisms of
ANGPTL3 on LPL in humans are not fully understood.
Earlier findings indicate that cleavage is crucial for the
function of ANGPTL3. The N-terminal fragment con-
taining the coiled coil domains of the protein is more ef-
ficient in inhibiting LPL than the full-length ANGPTL3
[2]. In this study, we used a detection method based on
protein binding of aptamers, which are reported to have
many advantages, compared to antibodies [35]. However,
in this and several other studies, the methods used for
detecting ANGPTL3 cannot distinguish between the dif-
ferent fragments of the protein, nor post-translational
modification. It is suggested that the functional fraction
of ANGPTL3 might not be found in circulation, but
exists bound to the endothelial surface of the adipose
tissue, cardiac muscle, and skeletal muscle for LPL-
mediated lipolysis [36]. This further specifies the need of



Fig. 4 pQTL association signals during weight loss in the region surrounding rs9994520 and SFRP2 gene. Association plot produced using
LocusZoom software for SNPs associated to ANGPTL3 protein level change during weight loss intervention. SNPs’ p values are plotted after
−log10 transformation with scale on the y-axis and colors reflect pairwise linkage disequilibrium with the most associated SNP in the region
(purple dot) based on the 1000 genomes EUR data set

Fig. 3 pQTL association signals at baseline in the region of surrounding rs4360730 and rs74234276 and BUD12, APOA4, APOA5, and ZNF259 (ZPR1)
genes cluster. Association plot produced using LocusZoom software for SNPs associated to ANGPTL3 protein level at baseline. SNPs’ p values are
plotted after −log10 transformation with scale on the y-axis and colors reflect pairwise linkage disequilibrium with the most associated SNP in the
region (purple dot) based on the 1000 genomes EUR data set
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an improved understanding regarding the LPL inhibitory
function of ANGPTL3 and further improvement of the
methods to detect and quantify the fragments of the
protein.
A study reported that the ANGPTL8 is the rate-

limiting protein for the activity of ANGPTL3 [37].
Co-expression of ANGPTL3 and ANGPTL8 in cultured
hepatocytes resulted in the appearance of a 33-kDa-sized
protein corresponding to the N-terminal domain of
ANGPTL3, whereas only full-length ANGPTL3 were
detected in cells that did not express ANGTPL8.
ANGPTL8 was not assayed on the Somalogic panel, and
it was not possible to study the relationship with
ANGPTL3 within the DiOGenes study. However, recent
in vivo studies have further indicated that ANGPTL3
and ANGPTL8 cooperate in the regulation of plasma
TG levels [38, 39]. Davies and colleagues demonstrated
that ANGPTL3 and ANGPTL8 as a complex exhibited a
greatly enhanced ability to bind LPL compared to either
protein alone. This complex was formed more effi-
ciently, when the two proteins were co-expressed [39].
This has led to the suggestion of interplay between
ANGPTL3, ANGPTL4, and ANGPTL8 in the regulation
of lipid metabolism [40, 41]. ANGPTL8 is induced by
feeding and possibly activates the inhibitory effects of
ANGPTL3 on LPL in cardiac and skeletal muscles,
directing circulating TG to the adipose tissue for storage.
In this study, the concentration of circulating ANGPTL3
and lipid parameters were measured in a fasted state,
which could explain the lack of significant associations.
It is likely that an ANGPTL3 response is only observed
post-prandial, and thus, a meal-test challenge would be
required to study the dynamics of ANGPTL3. ANGPTL4
is very similar to ANGPTL3 both in structure and in func-
tion and is induced by fasting and might inhibit LPL in
adipose tissue during energy restriction, directing TG to
cardiac and skeletal muscle for oxidation [40, 41].
Consistent with the conflicting results regarding

ANGPTL3 and lipid metabolism, the link between
ANGPTL3 and glucose metabolism remains unclear
[42, 43]. Our results showed a marginal association
between circulating ANGPTL3 and fasting insulin
concentrations. The mechanisms by which ANGPTL3
influence the insulin remains unclear, but there might
be a potential role of the protein to indirectly regu-
late glucose metabolism.
We found a strong positive association between

changes in ANGPTL3 levels and CK-18, together with a
negative association between changes in ANGPTL3 and
AST, both independently of weight loss. CK-18 is the
major intermediate filament protein in the liver. Circu-
lating CK-18 is associated with apoptotic cell death of
hepatocytes, and several studies have demonstrated the
elevation of CK-18 in the context of NASH and hepatic
inflammation [44]. AST is a transaminase enzyme
dependent on pyridoxal phosphate and important in the
amino acid metabolism. It is present as both cytoplasmic
and mitochondrial isoforms. In this study, we measured
the cytoplasmic isoform, which independently is a
marker of tissue injury. High levels of circulating AST is
not exclusively related to the liver steatosis, but could
also indicate diseases affecting other organs, as AST is
found in high concentrations in the liver, heart, skeletal
muscle, and kidney [45, 46]. To our knowledge, only one
human study has analyzed circulating ANGPTL3 con-
centration in relation to liver steatosis. This study found
that ANGPTL3 concentration was significantly and in-
dependently associated with NASH, but not in patients
with simple steatosis [9]. Szalowska et al. induced in-
flammation in human liver tissues in vitro and identified
ANGPTL3 as a biomarker associated with liver diseases
[47]. Together with our results regarding CK-18, it could
indicate that an increase in plasma ANGPTL3 concen-
tration is the result of liver inflammation or that
ANGPTL3 plays a role in the development of the dis-
eased condition. Due to the controversy of non-invasive
biomarkers as measurement of liver diseases, additional
studies should include actual liver biopsies to further
evaluate the role of ANGPTL3 in liver steatosis.
Our pQTL study highlighted SNPs that were modulat-

ing changes in circulating ANGPTL3 during the weight
loss period, of which one locus also seemed to modulate
CK-18 levels. Specifically, these pQTL studies revealed
three common genetic variants (rs4360730, rs74234276,
and rs9994520) associated with circulating ANGPTL3.
SNPs rs4360730 and rs74234276 are located near the
APOA4-APOA5-ZNF259-BUD13 gene cluster locus at
the chromosome region 11q23.3; and are in perfect LD.
Several genetic variants in this region have already been
associated to hyperlipidemia [48], serum lipid levels [49],
risk of developing metabolic syndrome [50], and plasma
TG level [51]. APOA4 and APOA5 encode apolipoproteins
involved in lipid metabolism [52]. ZNF259 encodes zinc
finger protein, a regulatory protein that is involved in cell
proliferation and signal transduction. BUD13 encodes for
BUD13 homolog protein, which is a subunit in the reten-
tion and splicing (RES) complex that affects nuclear pre-
mRNA retention. However, the exact function of ZNF259
and BUD13 in lipid mechanisms is unclear [48]. The re-
gion is an interesting target knowing that ANGPTL3 regu-
lates plasma lipid levels and is a potential therapeutic
target to treat combined hyperlipidemia [53]. The SNPs in
this region, rs4360730 and rs74234276, are trans-acting
genetic variants, probably working as distant regulators of
ANGPTL3 through mechanisms of the APOA4-APOA5-
ZNF259-BUD13 gene cluster. We further demonstrated
that CK-18 levels at baseline and during the weight loss
period were under genetic control by the rs4360730 SNP.
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The rs9994520 SNP is located near the SFRP2 gene.
This gene encodes the secreted Frizzled-related protein
2, which operates as soluble modulators of Wnt signal-
ing. The functional relationship between ANGPTL3 and
SFRP2 is not known. However, SFRP2 has been associ-
ated to adipose tissue mass and may play a role in adi-
pose angiogenesis of which angiopoietin-like proteins
are regulation key factors [54–56].
Interestingly, the identified pQTLs affecting circulating

ANGPTL3 during the weight loss intervention were not
detectable at baseline. This is consistent with our recent
large-scale pQTL study on 1129 proteins [17], where the
identified pQTL during LCD could not be identified at
baseline. This can be explained by effect size consider-
ation (statistical power): very large sample size would be
required to identify potential baseline pQTL. By con-
trast, a clinical intervention (such as LCD) would induce
drastic metabolic and physiological changes, thus would
lead to very large effect sizes and thereby significantly
improve our ability to detect pQTLs associated with
such drastic shift in homeostasis [17].
Conclusions
In conclusion, we uncover genetic regulators of circulat-
ing ANGPTL3 during LCD and the link with markers of
liver function. We report several trans-acting pQTL on
changes in circulating ANGPTL3 during LCD. These
pQTLs were not detectable at baseline, suggesting a
change in the regulation of ANGPTL3 due to calorie re-
striction. It was not possible to clarify the controversy
regarding the function of ANGPTL3 in lipid metabolism
as we found a very marginal association with total lipid
levels. However, our data suggest strong associations
with specific liver markers (CK-18 and AST). These ob-
servations are supported by the identification of pQTL
signals that affect ANGPTL3 levels during the weight
loss period. Our analysis also suggests an extended func-
tion of ANGPTL3 in the development of liver steatosis
and shows a common genetic regulation for both
ANGPTL3 and markers of liver function.
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