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The effect of maternal undernutrition on
the rat placental transcriptome: protein
restriction up-regulates cholesterol
transport

Zoe Daniel1, Angelina Swali1, Richard Emes2,3 and Simon C Langley-Evans1*
Abstract

Background: Fetal exposure to a maternal low protein diet during rat pregnancy is associated with hypertension, renal
dysfunction and metabolic disturbance in adult life. These effects are present when dietary manipulations target only the
first half of pregnancy. It was hypothesised that early gestation protein restriction would impact upon placental gene
expression and that this may give clues to the mechanism which links maternal diet to later consequences.

Methods: Pregnant rats were fed control or a low protein diet from conception to day 13 gestation. Placentas were
collected and RNA sequencing performed using the Illumina platform.

Results: Protein restriction down-regulated 67 genes and up-regulated 24 genes in the placenta. Ingenuity pathway
analysis showed significant enrichment in pathways related to cholesterol and lipoprotein transport and metabolism,
including atherosclerosis signalling, clathrin-mediated endocytosis, LXR/RXR and FXR/RXR activation. Genes at the centre
of these processes included the apolipoproteins ApoB, ApoA2 and ApoC2, microsomal triglyceride transfer protein
(Mttp), the clathrin-endocytosis receptor cubilin, the transcription factor retinol binding protein 4 (Rbp4) and
transerythrin (Ttr; a retinol and thyroid hormone transporter). Real-time PCR measurements largely confirmed the
findings of RNASeq and indicated that the impact of protein restriction was often striking (cubilin up-regulated 32-fold,
apoC2 up-regulated 17.6-fold). The findings show that gene expression in specific pathways is modulated by maternal
protein restriction in the day-13 rat placenta.

Conclusions: Changes in cholesterol transport may contribute to altered tissue development in the fetus and hence
programme risk of disease in later life.
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Background
The causes of chronic diseases of adulthood are com-
plex. In addition to influences of adult lifestyle, such as
dietary pattern, physical activity and the consumption
of alcohol and smoking, the environment experienced
during infancy and fetal life plays a critical role in estab-
lishing adult metabolic and cardiovascular phenotypes [1].
Early life exposure to poor nutrition (both under- and
over-nutrition) can programme aspects of adult anatomy,
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physiology and metabolism [2, 3]. Risk of cardiovascular
and metabolic disorders that emerge later in life may
therefore already in place even before birth. Epidemio-
logical studies which show relationships between proxy
markers of poor nutrition in pregnancy and diseases
including cardiovascular disease, type-2 diabetes and
chronic kidney disease are supported by observations in
animals [2, 4–6]. Manipulating either overall food supply
or dietary composition such that one or more nutrients is
limiting during pregnancy leads to permanent changes in
organ structure and establishes a predisposition to ageing-
related insulin resistance, cardiovascular dysfunction and
renal disease [1].
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We previously showed that exposure of the developing
rat fetus to maternal undernutrition (both protein restric-
tion and iron deficiency) up to day 13 gestation (full-term
is 22 days) induced changes in renal morphology that may
underpin the development of hypertension in later life [7].
These effects were associated with a number of changes in
the expression of genes and proteins in the day 13 embryo,
which were clustered around regulation of the cell cycle,
the cytoskeleton and formation of clathrin vesicles [7, 8].
Whilst these processes within the embryo can be envisaged
as contributing to remodelling of tissues and therefore per-
manent changes in the physiology of the animal, leading to
later disease [9], they do not give an indication of what ini-
tiates these changes in response to maternal diet.
The placenta has long been recognised as having an im-

portant role in nutritional programming of later disease [10]
either through dietary modulation of placentally derived
hormones, dietary modulation of the placental transport of
hormones [11] or variation in the delivery of key substrates
to the developing fetus [12]. As such, it may be at the centre
of the response to maternal undernutrition and the transfer
of signals of adverse conditions from mother to fetus. Pla-
cental functions will vary with stage of development and the
demands of the fetus. In this study, we have focused on the
day-13 rat placenta. At this point, full development of the
organ has not been completed, but all five basic placental
layers are in place (myometrium, deciduum, giant tropho-
blasts, trophospongium and labyrinth; [13]. The tissue is rich
in blood cells and glycogen cells but has not yet developed
invasive vessels [13]. In the rat, maximum placental weight
is not reached until day 16. We hypothesised that the estab-
lished but immature placenta would show differential pat-
terns of gene expression in response to maternal protein
restriction. These patterns may give important clues as to
how maternal nutrition at this stage of development may
have long-term consequences for the fetus.

Methods
This paper reports data from analysis of placentas col-
lected in our previously published study of gene and pro-
tein expression in day-13 rat embryos [7]. Female virgin
Wistar rats (Harlan, UK) were subjected to a 12 h light
(08:00–20:00)-dark (20:00–08:00) cycle at a temperature
of 20–22 °C with ad libitum access to food and water. At a
weight of approximately 180–200 g, females were mated
with stud males. After conception, determined by the
presence of a semen plug on the cage floor, females were
single-housed and animals were fed either a control 18 %
(w/w) casein protein diet (control protein (CP)) or a 9 %
(w/w) casein (low protein (LP)) diet until day 13 gestation
(n = 8 per group). The LP diet was isocaloric relative to
the control (see Additional file 1: Table S1 for composition
of diets). To achieve a 50 % reduction in protein content
of the LP diet, an additional 9 % carbohydrate was added.
We have previously discussed the relative contributions
of protein, carbohydrate and lipids to programming ef-
fects of the diet in detail [14–16]. During pregnancy,
the animals were weighed and food intake was recorded
daily. All animal work was performed under licence
from the Home Office (UK) and complied with the
Animals (Scientific Procedures) Act (1986). The project
was approved by the University of Nottingham, Animal
Ethics Committee.
On day 13 of gestation the rats were culled by CO2

asphyxia and cervical dislocation. Individual embryos
and placentas were harvested. Tails were removed from
embryos to establish sex. Tissues were snap frozen in
liquid nitrogen and stored at −80 °C. PCR was used to
verify presence or absence of the sex determining
region-Y (SRY) gene in lysed embryo tail tissue [7]. This
study used placenta only from male embryos and to
generate the RNA samples for RNASeq analysis three
placentas from the same litter were pooled. Only male
embryos were selected to remove complications of sex
from the analysis. Previous work has shown that the im-
pact of maternal undernutrition upon long-term health
of offspring is greater in males than in females [17–19].
Overall six samples per group were used for the analysis,
with each sample representing three placentas associated
with male embryos from a separate litter (18 placentas,
6 litters per group).
High-quality RNA was prepared from frozen tissue

using Roche High Pure Tissue Kit according to the
manufacturer’s instructions. Samples of high-quality
RNA (RIN >6.0) were sent to Oxford Gene Technology
(Begbrooke, Oxfordshire, UK) for polyA-enriched RNA
sequencing using the Illumina TruSeq RNA sample
prep kit v2 (Illumina, Little Chesterford, Essex, UK).
With this kit, total RNA was captured using olido-dT
coated magnetic beads and messenger RNA (mRNA)
was fragmented and randomly primed. First strand
complementary DNA (cDNA) was initiated from ran-
dom primers, followed by second strand synthesis.
After end repair, phosphorylation and A-tailing, adapter
ligation and PCR amplification was performed to pre-
pare the library for sequencing.
Sequencing was performed on the Illumina HiSeq2000

platform using TruSeq v3 chemistry. Read files (Fastq)
were generated from the sequencing platform via the
manufacturer’s proprietary software, and read level QC
metrics were generated by FastQC http://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/). Reads were proc-
essed through the Tuxedo suite [20] and mapped to their
location using Bowtie version 2.o2 (http://bowtie-bio.
sourceforge.net/index.shtml). Cufflinks v2.1.1 (http://
cole-trapnell-lab.github.io/cufflinks/) was used to perform
transcript assembly, abundance estimation and differential
expression for the samples. RNASeq alignment metrics
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Table 1 Differentially expressed genes in rat placenta at d13 gestation

Gene ID Locus Expression (control) Expression (LP) Fold−change (log2) Q value

Actg2 4:117732482-117747006 71.49 2.48 −4.85 0.00922

Gzmf 15:34696237-34707618 103.92 4.98 −4.38 0.00922

Gzmb 15:35195449-35198468 384.48 20.68 −4.22 0.00922

Nkg7 1:93813122-93814188 146.90 8.65 −4.09 0.00922

Prf1 20:28658366-28663866 171.89 10.39 −4.05 0.00922

Ccl5 10:71605790-71610330 59.82 4.15 −3.85 0.00922

Zbtb32 1:85635283-85637589 7.78 0.57 −3.77 0.04862

Asb2 6:127609501-127645492 5.26 0.46 −3.53 0.00922

Lama2 1:18203478-18885460 4.48 0.40 −3.49 0.00922

Cd96 11:56183624-56258356 11.16 1.03 −3.43 0.01702

MYH11_RAT 10:666714-776052 8.22 0.77 −3.42 0.00922

Rgs1 13:58121190-58125514 12.73 1.29 −3.31 0.00922

Ptprcap 1:206738734-206740893 13.28 1.57 −3.08 0.04148

LOC305103 13:88606173-88611105 120.74 14.38 −3.07 0.00922

D4ADB8_RAT 8:21210583-21221026 9.83 1.18 −3.06 0.00922

Cdh17 5:26047159-26099164 3.75 0.46 −3.02 0.02304

E9PSV0_RAT 20:4300723-4315876 10.67 1.34 −2.99 0.00922

Igfbp6 7:140885375-140890043 228.66 28.85 −2.99 0.00922

Col6a6 8:110793848-110892578 5.48 0.69 −2.98 0.00922

ADH1_RAT 2:235799456-235811584 69.42 9.27 −2.90 0.00922

Mcpt9 15:34541881-34544835 26.43 3.53 −2.90 0.00922

Lck 5:148707506-148718296 15.93 2.21 −2.85 0.00922

C1s 4:160736132-160748150 22.95 3.25 −2.82 0.00922

Pla1a 11:64099836-64137355 12.63 1.79 −2.82 0.00922

Sep1 1:186474714-186478580 11.10 1.58 −2.82 0.00922

COBA1_RAT 2:209996818-210193378 12.61 1.92 −2.71 0.02304

C1r 4:160712581-160729361 29.45 4.56 −2.69 0.00922

Q3MIE5_RAT 10:19207498-19660353 2.64 0.41 −2.67 0.00922

CLM8_RAT 10:104775859-104788927 15.09 2.50 −2.59 0.01702

Phf11 15:38444406-38477945 27.05 4.56 −2.57 0.00922

Sfrp4 17:53121424-53131513 42.94 7.23 −2.57 0.00922

Cytip 3:39893892-39921114 6.66 1.17 −2.50 0.02304

Rac2 7:116520065-116532482 38.51 6.90 −2.48 0.00922

C1qb 5:155647525-155653074 13.93 2.52 −2.47 0.02873

Coro1a 1:185852741-185857715 40.30 7.80 −2.37 0.00922

Aldh1a2 8:75692098-75771159 6.41 1.26 −2.35 0.00922

Pla2g2a 5:157654785-157657360 19.90 3.90 −2.35 0.02304

Smoc2 1:53165791-53295122 3.31 0.68 −2.29 0.04862

Rab27a 8:77798829-77861089 8.05 1.73 −2.22 0.00922

Serping1 3:67968807-67978102 39.91 8.61 −2.21 0.00922

D3ZXA0_RAT 15:38372728-38391822 21.10 4.62 −2.19 0.00922

RGD1565772 1:67630583-67648373 4.21 0.94 −2.17 0.00922

Rgs2 13:57890948-57894465 30.51 6.87 −2.15 0.00922

Psmb8 20:4786263-4789173 43.92 10.48 −2.07 0.00922
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Table 1 Differentially expressed genes in rat placenta at d13 gestation (Continued)

Tagln 8:48902208-48907693 99.68 23.75 −2.07 0.00922

C1qc 5:155656104-155659430 13.41 3.31 −2.02 0.04502

Prelp 13:46801474-46943977 12.67 3.13 −2.02 0.00922

LOC100365668 10:38109857-38110205 120.96 30.50 −1.99 0.00922

Fst 2:46542245-46550678 60.50 15.49 −1.97 0.00922

Ptprc 13:51246163-51357995 11.13 2.93 −1.93 0.00922

Selplg 12:43842267-43843560 11.84 3.10 −1.93 0.04862

Angpt4 3:142249114-142282307 14.42 4.07 −1.82 0.04502

Itgal 1:186561794-186598905 4.37 1.26 −1.80 0.02873

Fcer1g 13:87119465-87123902 78.98 23.70 −1.74 0.00922

Plek 14:97841598-97875052 18.70 5.63 −1.73 0.00922

Ccdc88b 1:209520223-209536201 3.50 1.06 −1.72 0.04502

Ifitm3 1:201198666-201199807 153.46 48.97 −1.65 0.01702

Pcolce 12:19672504-19678821 53.84 18.12 −1.57 0.04862

Plcg2 19:47875571-47947573 5.87 2.12 −1.47 0.03500

Prl8a7 17:44148436-44154238 43.87 15.87 −1.47 0.00922

Bgn X:159380548-159391521 29.57 11.81 −1.32 0.02873

Cgm4 1:77441012-77453814 15.02 6.04 −1.31 0.02304

Pmp22 10:49305834-49335864 30.24 12.39 −1.29 0.03500

Laptm5 5:149775895-149797951 70.71 29.18 −1.28 0.02304

Mmp12 8:4249934-4328865 53.39 26.46 −1.01 0.04502

Ifitm2 1:201134356-201135537 141.63 72.01 −0.98 0.02873

Prl7b1 17:43783361-43791538 96.93 51.16 −0.92 0.04502

Sod3 14:63381447-63387180 7.22 20.37 1.50 0.00922

Tf 8:108196748-108244545 62.61 188.51 1.59 0.02304

Gpc3 X:139192114-139393977 9.56 30.69 1.68 0.00922

Ccdc37 4:124661801-124671607 5.76 18.58 1.69 0.00922

Cldn2 X:127538684-127549018 1.66 5.37 1.69 0.04862

Pcdh24 17:15937976-15962796 1.80 6.02 1.74 0.02873

Muc13 11:68772164-68794880 3.41 11.77 1.79 0.00922

Fgg 2:174727311-174734592 11.29 41.76 1.89 0.00922

Creb3l3 7:10106524-10114955 3.23 12.04 1.90 0.01702

Mttp 2:235613709-235654848 2.33 9.12 1.97 0.00922

Serpinf2 10:62748115-62756200 3.56 14.05 1.98 0.00922

Serpina1 6:127998618-128021719 4.90 20.49 2.06 0.01702

Fmo1 13:78503769-78536359 6.70 28.40 2.08 0.00922

Maob X:17553528-17657839 6.15 26.17 2.09 0.00922

Rbp4 1:242443797-242450998 83.56 362.99 2.12 0.00922

Tdh 15:42758307-42771849 4.69 21.22 2.18 0.00922

Ttr 18:12406550-12413680 135.68 616.60 2.18 0.00922

Vil1 9:73748631-73776345 1.11 5.07 2.19 0.04502

Apoa4 8:49233139-49233436 61.26 291.64 2.25 0.00922

Apob 6:31508011-31556597 9.20 43.86 2.25 0.00922

Apoa2 13:87114733-87116372 70.35 335.96 2.26 0.00922
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Table 1 Differentially expressed genes in rat placenta at d13 gestation (Continued)

Spp2 9:87297051-87316545 16.85 80.97 2.26 0.00922

Apoc2 1:78979033-78980136 42.59 241.21 2.50 0.00922

Cubn 17:87655812-87772079 0.96 6.33 2.72 0.00922

n = 6 per group

Table 2 Pathways significantly influenced by maternal protein
restriction in the day 13 rat placenta

Pathway P value
(log10)

Differentially expressed
genes in pathway

Acute-phase signalling 11 C1R, C4A/C4B, Serpin G1,
TTr, TF, C1S, ApoA2, Serpin
A1, Serpin F2, Fgg, Rbp4

FXR/RXR activation 10.9 C4A/C4B, TTr, ApoB, TF,
ApoA2, Serpin A1, ApoC2,
Serpoin G2, Mttp, Rbp4

LXR/RXR activation 9.59 C4A/C4B, Ttr, ApoB, TF,
ApoA2, ApoC2, Serpin A1,
Serpin F, Rbp4

Atherosclerosis signalling 6.72 ApoB, ApoA2, ApocC2,
Serpin A1, Pla2g2A, Selpg,
Rbp4

Clathrin-mediated endocytosis 5.55 ApoB, RF, ApoA2, ApoC2,
Serpin A1, Actg2, Rbp4

IL12 signalling in macrophages 4.08 ApoB, ApoA2, ApoC2,
Serpin A1, Rbp4

Coagulation system 3.66 Serpin A1 Serpin F2, Fgg

Nitric oxide and ROS
production in macrophages

3.47 ApoB, ApoA2, ApoC2,
Serpin A1, Rbp4

The table shows ingenuity canonical pathways with significant enrichment in
comparison of control and low protein exposed placentas
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were generated using Picard tools (http://broadinstitute.
github.io/picard/).
RNASeq was carried out on 12 samples with an aver-

age of 12279507 paired end reads per sample. A total of
11.63 gigabases of sequence data were read and aligned
at high quality. The number of mapped reads per sample
ranged from 3081828 to 17579532, and the proportion
of mapped reads exceeded 99 % across all samples. The
percentage of high-quality aligned bases was in excess of
98.5 and >96.5 % of reads were aligned in pairs.
Data was analysed using Cufflinks v2.1.1. A one-sided

t test was used to determine the significant changes in
gene expression (P value), and a Benjamini-Hochberg
correction for multiple testing was also used (q value) as
reported by Trapnell et al. [21]. Selection of genes iden-
tified as differentially expressed in the protein restricted
group was based upon false discovery rate adjusted q
values <0.05 (unadjusted P < 0.0005). Pathways and net-
works of interacting proteins enriched for differentially
expressed genes were identified using ingenuity pathway
analysis. Statistical enrichment is calculated by a right
tailed Fisher’s exact test (IPA, QIAGEN Redwood City
www.qiagen.com/ingenuity).
To further explore the differential expression data, we

performed quantitative real-time PCR for 13 genes that
were differentially expressed according to the RNASeq
analysis. These included seven genes in the main pathways
showing enrichment in the ingenuity analysis (ApoA2,
ApoC2, Ttr, Fgg, Actg2, serpin G1 and Rbp4); Cubn and
Mttp, which have functions closely related to those
enriched pathways; and four genes that were shown to be
differentially expressed in the protein restricted condition
(Vil1, Gpc3, Muc13, Prf1). The PCR measurements were
performed on the same RNA samples that were originally
analysed through RNASeq. Total RNA (500 ng) was re-
verse transcribed using a cDNA synthesis kit (RevertAid
RT Reverse Transcription Kit, Thermo Fisher) with ran-
dom primers. Real-time PCR primers were designed using
Primer Express software (version 1.5; Applied Biosystems)
from the RNA sequence, checked using BLAST (National
Center for Biotechnology Information) and were pur-
chased from Sigma (UK). The primer sequences for these
analyses are presented in Additional file 2: Table S2. Real-
time PCR was performed on a Lightcycler 480 (Roche,
Burgess Hill, UK) using the 384 well format. Each reaction
contained 5 μl of cDNA with the following reagents: 7.5 μl
SYBR green master mix (Roche), 0.45 μl forward and
reverse primers (final concentration 0.3 μM each) and
1.6 μl RNase-free H2O. Samples were pre-incubated at
95 C for 5 min followed by 45 PCR amplification cycles
(de-naturation, 95 C for 10 s; annealing, 60 C for 15 s;
elongation, 72 C for 15 s). Transcript abundance was
determined using a standard curve generated from serial
dilutions of a pool of cDNA made from all samples. Ex-
pression was normalised against the expression of
cyclophilin, which was shown to be unaffected by ma-
ternal diet in the RNASeq analysis and subsequently by
PCR. The primer sequences for these analyses are
presented in Additional file 2: Table S2. Data from real-
time PCR measurements was tested using independent
samples t tests. Ten of the targets were shown to be
differentially expressed in the protein restricted group,
confirming the RNASeq analysis.

Results
The RNASeq analysis revealed differential expression
of 91 genes in the day 13 rat placenta in response to
maternal protein restriction. Of these, 24 were up-
regulated and 67 were down-regulated. The full list of
differentially expressed genes is provided in Table 1, and
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the full transcriptome analysis is available in Additional
file 3: Table S3.
Analysis of the data set using ingenuity pathway

analysis identified 19 pathways that were significantly
affected by maternal protein restriction with P < 0.01. A
more stringent cut-off of P < 0.001 identified eight
significantly affected pathways (Table 2). The top six
pathways (acute-phase response signalling, FXR/RXR
activation, liver X receptor (LXR)/retinoid X receptor
(RXR) activation, complement system, atherosclerosis
signalling, clathrin-mediated endocytosis signalling)
were closely related functionally, with a strong focus on
cholesterol uptake and efflux across the placenta.
Figure 1 shows heat maps for the genes involved in the
functionally interesting enriched pathways. A relatively
Fig. 1 Heatmaps of gene expression (log2 FPKM) for pathways that are sig
signalling. b Clathrin-mediated endocytosis. c LXR/RXR activation. D FXR/RX
small number of genes contributed to the enrichment
noted for all of these pathways (Ttr, ApoA2, ApoB,
ApoC2, Fgg, Rbp4, Serpin A1, Serpin F2 and Serpin G1).
To validate the observations made using RNASeq

analysis, quantitative real-time PCR was performed to
explore the expression of 13 genes in two selection
groups. The first group comprised genes that were
differentially expressed with protein restriction and
deemed functionally significant (associated with choles-
terol transport) based upon the Ingenuity analysis (Ttr,
ApoA2, ApoC2, Rbp4, Fgg, Actg2). The second group
were genes that were differentially expressed but not
associated with the pathways identified by Ingenuity
(Muc13, Vil1, Gpc3, Cubn, Mttp). It should be noted
that Cubn has a role in the uptake of high-density
nificantly influenced by maternal protein restriction. a Atherosclerosis
R activation
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lipoprotein (HDL)-cholesterol by the placenta and that
Mttp has a role in the packaging of cholesterol and
lipid into low-density lipoprotein (LDL). Figures 2 and
3 show the data from the PCR analyses of these genes
and Table 3 compares the fold-change in expression
noted in the RNASeq analysis. The majority of genes in
the validation set were strongly over-expressed in pla-
centas from protein restricted pregnancies compared to
controls, with a minimum of 4.53-fold (Gpc3) and max-
imum 41.35-fold (Fgg) up-regulation noted in this set.
PCR analysis of three genes did not reproduce the sta-
tistically significant effects of protein restriction that
Fig. 2 Expression of genes related to enriched pathways. Real-time qualita
related to canonical pathways identified by ingenuity as significantly influe
cyclophilin mRNA expression and *P < 0.05 between groups. n = 6 per grou
were shown by RNASeq (Actg2, SerpinG1 and Prf1;
Fig. 4). The PCR analysis generally detected a greater
degree of up-regulation in the validation set than was
noted with RNASeq (Table 3).

Discussion
In this experiment, we tested the hypothesis that mater-
nal protein restriction would impact upon gene expres-
sion in the day-13 rat placenta. The data showed that
this was in fact the case and that although the number
of genes affected was small, the nutritional insult had a
major impact upon expression of genes associated with
tive PCR was used to validate the differential expression of seven genes
nced by maternal protein restriction. Expression was normalised to
p



Fig. 3 Expression of genes unrelated to enriched pathways. Real-time qualitative PCR was used to validate the differential expression of six genes
related to canonical pathways identified by ingenuity as significantly influenced by maternal protein restriction. Expression was normalised to
cyclophilin mRNA expression. *P < 0.05 between groups. n = 6 per group
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cholesterol transport processes within the tissue. The
expression of genes involved in the uptake of cholesterol
by the placenta from HDL- LDL- and very low-density
lipoprotein (VLDL)-cholesterol (ApoA2, ApoB, ApoC2,
Cubn), the formation of clathrin-coated pits in which
VLDL- and LDL-cholesterol receptors are located (Tf,
Orm1, ApoA2, ApoC2, Actg2, Rbp4), the regulation of
cholesterol efflux (Ttr, Tf, Orm1, Serpin F1, Rbp4, Mttp,
Fgg, Serpin F2, Serpin A1) and the efflux from the
placenta as LDL-cholesterol (ApoB, Mttp) were generally
up-regulated by maternal undernutrition. Importantly,
we have confirmed that the effects of maternal protein
restriction during the first half of pregnancy may be me-
diated through changes in placental function.
Previous studies suggest that placental structure and
organisation may be influenced by maternal protein re-
striction in both rats and mice [22–24]. These diet-
related changes appear to be related to differential
expression of adhesion molecules (beta catenin and
vascular endothelial cadherin) and impaired cell prolif-
eration. These processes appeared to be largely un-
affected in the present study (although cadherin Cdh17
was down-regulated by protein restriction) and the
discrepancies may stem from species differences or dif-
ferences in stage of gestation at which samples were
collected.
Functionally, placentas from protein-restricted rodents

are known to differ in terms of materno-fetal steroid



Table 3 Comparison of fold-change in gene expression between
RNASeq and real-time PCR

Gene Log2 fold-change RNA Seq Log2 fold-change RNA PCR

Actg2 −4.85*** 0.28

Apo A2 2.26*** 4.79*

Apo C2 2.52*** 4.14*

Cubn 2.71*** 5.01*

Fgg 1.88*** 5.37*

Gpc3 1.68*** 2.18*

Mttp 1.97*** 3.14*

Muc13 1.79*** 2.71*

Prf1 −4.04*** 1.68

Rbp4 2.11*** 3.85*

Serpin G1 −2.21*** 0.69

Ttr 2.18*** 3.52*

Vil1 2.19*** 3.41*

Significant differences were noted between control and low protein exposed
placentas within each analytical approach (*P < 0.05, ***P < 0.001)
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exchange [11] and transport of fatty acids and amino
acids [12, 25, 26]. Whilst specific genes related to these
functions have been previously identified as being sensi-
tive to protein restriction, none were found to be differ-
entially expressed in the current study. This is most
likely explained by our study concentrating on day-13
rather than later stage placentas.
Cholesterol transport across the placenta is complex

and involves a large number of proteins [27]. Choles-
terol reaches the placenta in the form of LDL- VLDL-
and HDL-cholesterol, which have ApoB, ApoC2 and
ApoA2 respectively as their key structural proteins.
LDL- and VLDL-cholesterol are taken up by their re-
spective receptors which are located in clathrin-coated
pits on trophoblasts. HDL-cholesterol can be taken up
by SR-B1 (scavenger receptor class B member 1) or by
binding to proteins such as megalin and cubilin. The
latter two are multifunctional receptors which mediate
uptake of material by endocytosis [28, 29]. Once taken
up by trophoblasts, cholesterol is hydrolysed to chol-
esterol esters. Export from trophoblasts is in the form
of either LDL-cholesterol or HDL-cholesterol. LDL-
cholesterol is formed through placental expression of
apoB and the action of microsomal triglyceride transfer
protein (Mttp). HDL-cholesterol can be formed through
complexing of lipids and cholesterol with a range of
different apolipoproteins (ApoA1, ApoE, ApoA4, ApoC1,
ApoC4; [27]). These are synthesised in response to
LXR/RXR activation [30]. ApoA1 synthesis is also
influenced by FXR/RXR activation [31]. Cholesterol
efflux for formation of HDL-cholesterol complexes is
dependent upon a range of ATP binding cassette proteins
(AbcA1, AbcG1, AbcG5, AbcG8, [27]), which are down-
stream targets of FXR/RXR activation [32]. The present
study has shown that almost all of these processes
are sensitive to maternal protein restriction, and im-
portantly, we have found that the only significant
enrichment of pathways within our dataset lies in
these processes. If there are any strong drivers of
nutritional programming through the placenta at this
stage of development, then cholesterol must play a
key role.
The uptake of cholesterol by the embryo and fetus is

critical for normal development [27], and defects of
endogenous cholesterol synthesis are known to be le-
thal [33]. Cholesterol will also play an important role
in placental function as it is the precursor for all
steroid hormone synthesis. Disturbances of placental
transport or endogenous fetal synthesis can have a
number of effects on growth, cell proliferation, metab-
olism and the organisation of tissues [27, 34]. Low ma-
ternal cholesterol is associated with lower birth weight
and microcephaly in humans [35], and women who
have growth retarded infants have been found to have
lower circulating cholesterol [36]. Optimal cholesterol
transport to the fetus is therefore likely to have a posi-
tive impact upon development, and it is known that
some of the effects are mediated through the cell cycle
[37, 38]. However, some animal studies suggest that ex-
cessive cholesterol may also have a negative impact on
growth. Bhasin et al. [39] reported that hypercholester-
olaemia in pregnant LDL receptor knockout mice was
associated with intrauterine growth retardation. The
relationship between fetal cholesterol and the normal
development and organisation of tissues may therefore
be complex.
It is known that hypercholesterolaemia during preg-

nancy is associated with adverse health outcomes in
the longer term. In humans, there is evidence that ma-
ternal hypercholesterolaemia is associated with the
development of fatty streaks in fetal arteries [40], and
cholestasis during pregnancy is associated with pro-
gramming of an overweight, insulin-resistant pheno-
type in humans [41]. Animal studies have shown
greater atherosclerosis in offspring of hypercholester-
olaemic mothers [42, 43]. Previous work from our la-
boratory showed that in the ApoE*3 Leiden mouse, a
transgenic rodent which has a predisposition to athero-
sclerosis, maternal protein restriction during fetal devel-
opment increased atherosclerotic lesion size in adult
life [44]. As atherosclerosis in this mouse is related to
the degree of cholesterol exposure, it may be that intra-
uterine exposure to higher than normal cholesterol
transport across the placenta may contribute to the
adult disease phenotype. Induction of cholestasis using
cholic acid in mouse pregnancy produces the same



Fig. 4 PCR analysis of three genes
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phenotype as in seen in humans [41] and is associated
with greater cholesterol efflux from the placenta.
This study was an initial exploratory study to estab-

lish whether the placental transcriptome was signifi-
cantly impacted by maternal protein restriction and to
determine whether any observed effects were isolated
to discrete processes within the tissue. One limitation
of the study is that the whole placenta was used to
generate the RNA, with no distinction between the
maternal and fetal placental tissue. In the absence of
any direct measurements of cholesterol transport or
measurement of the genes of interest at the level of
protein, assumptions are being made about the pro-
cesses of cholesterol uptake and efflux being sensitive
to maternal undernutrition. These measurements will
be a priority for future studies, as will confirmation
that placentas associated with female embryos respond
in the same way as those from males.
Conclusions
Current thinking about the mechanisms which link ma-
ternal nutritional status and long-term health in off-
spring is largely focused upon lasting epigenetic changes
within the fetal genome [45]. This study has highlighted
placental function as being modulated by maternal un-
dernutrition and reinforces the alternative concept that
programming of fetal development and long-term health
may be a product of dysregulation of nutrient transfer
across the placenta. Further studies are needed to evalu-
ate cholesterol transport across the placenta in protein-
restricted pregnancies and to determine the impact of
cholesterol on fetal gene expression, epigenetic regulation
of gene expression and tissue morphology. This analysis of
the placental transcriptome at the point where the pla-
centa is not fully mature has supported the hypothesis that
maternal undernutrition impacts upon placental function.
The findings of this study will provide a platform for
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further investigation of processes within placenta that may
be important new mechanistic targets or biomarkers that
indicate nutritional programming of disease.
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