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Abstract Optimal health is maintained by interaction of

multiple intrinsic and environmental factors at different

levels of complexity—from molecular, to physiological, to

social. Understanding and quantification of these interac-

tions will aid design of successful health interventions. We

introduce the reference network concept as a platform for

multi-level exploration of biological relations relevant for

metabolic health, by integration and mining of biological

interactions derived from public resources and context-

specific experimental data. A White Adipose Tissue Health

Reference Network (WATRefNet) was constructed as a

resource for discovery and prioritization of mechanism-

based biomarkers for white adipose tissue (WAT) health

status and the effect of food and drug compounds on WAT

health status. The WATRefNet (6,797 nodes and 32,171

edges) is based on (1) experimental data obtained from 10

studies addressing different adiposity states, (2) seven

public knowledge bases of molecular interactions, (3)

expert’s definitions of five physiologically relevant pro-

cesses key to WAT health, namely WAT expandability,

Oxidative capacity, Metabolic state, Oxidative stress and

Tissue inflammation, and (4) a collection of relevant
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biomarkers of these processes identified by BIOCLAIMS

(http://bioclaims.uib.es). The WATRefNet comprehends

multiple layers of biological complexity as it contains

various types of nodes and edges that represent different

biological levels and interactions. We have validated the

reference network by showing overrepresentation with

anti-obesity drug targets, pathology-associated genes and

differentially expressed genes from an external disease

model dataset. The resulting network has been used to

extract subnetworks specific to the above-mentioned

expert-defined physiological processes. Each of these pro-

cess-specific signatures represents a mechanistically sup-

ported composite biomarker for assessing and quantifying

the effect of interventions on a physiological aspect that

determines WAT health status. Following this principle,

five anti-diabetic drug interventions and one diet inter-

vention were scored for the match of their expression

signature to the five biomarker signatures derived from the

WATRefNet. This confirmed previous observations of

successful intervention by dietary lifestyle and revealed

WAT-specific effects of drug interventions. The WAT-

RefNet represents a sustainable knowledge resource for

extraction of relevant relationships such as mechanisms of

action, nutrient intervention targets and biomarkers and for

assessment of health effects for support of health claims

made on food products.

Keywords Network biology � Systems biology �
Data integration � Adipose tissue � Nutrition � Drugs

Introduction

Health is maintained by interplay among multiple intrinsic

and environmental factors, which are interacting at different

complexity levels. For instance, organ functioning is deter-

mined by multiple (psycho)physiological processes, which

can in turn be modified by chemical compounds that act via

molecular networks of genes, proteins or lipid species (Ol-

tvai and Barabási 2002; Schadt and Björkegren 2012; Bar-

abási et al. 2011). To achieve and maintain optimal health, it

is important to understand such complex biological rela-

tions—from molecular, to physiological, to social—and to

determine elements and paths whose modification will drive

system toward a desired state (Barabási 2007). This calls for

approaches that can comprehend complex relations and

account for multiple biological levels in order to build a

coherent picture (‘‘a signature’’) of health.

A quest for defining and quantifying health status and

effects of interventions to improve health is facilitated by

technological advances in the last decades. By expansion of

high-throughput screening methods, next-generation

sequencing technology, self-monitoring devices, online

information-sharing platforms and similar technological

breakthroughs, we have now acquired the means to mea-

sure, share, and compute (personal) data and knowledge at

an increasingly large scale (Chen et al. 2012; Murdoch and

Detsky 2013; Field et al. 2009). Network-based methods

provide a platform to integrate and organize such diverse

and abundant (‘‘big’’) data into a knowledge resource by

bridging multiple data silos at multiple biological levels

(Barabási and Oltvai 2004). For instance, biological net-

works can be built to integrate experimental data with prior

knowledge about molecular interactions (protein–protein,

protein–DNA and ligand–receptor), regulatory aspects

(transcription factor, miRNA targets and epigenetics),

mechanistic context (signalling cascades and metabolic

pathways), tissue specificity, association of molecular

phenotypes and processes with (patho)physiological con-

ditions, outcomes of self-assessment questionnaires, etc.

Such comprehensive relational maps can be mined using

network-based algorithms for associations with specific

health and disease aspects (Langfelder and Horvath 2008;

Carter et al. 2013) and for extraction of features of interest,

such as key submodules (Mitra et al. 2013) and regulators,

intervention targets and biomarkers (Hofree et al. 2013;

Dudley and Butte 2009; Wang and Chen 2011). It is

becoming evident that this approach facilitates discovery of

more robust biomarkers and intervention targets compared

to solely correlation-based feature selection methods

(Roukos 2010), namely it allows identification of features

whose mechanistic context implies their key role in phys-

iologically relevant processes, which in turn drive the

functioning of (systems of) organs, consolidating the

cause–effect relationship between molecular changes and a

health effect.

Approaches that include all relevant parameters and

interactions of the biological system are particularly rele-

vant in deciphering metabolic health and disease, as

imbalance in metabolic homeostasis can be triggered by

multiple, heterogeneous and often subtle intrinsic and

environmental changes (Corthésy-Theulaz et al. 2005). To

maintain metabolic health, many organs and systems need

to function synchronously and within their optimal func-

tioning range. Important metabolic health determinants

include: liver substrate handling, white adipose tissue

energy storage capacity, pancreatic insulin production,

muscle metabolic response to exercise, vasculature hemo-

dynamics and adequate immune response (Leviston 2011).

The complete metabolic system strives to maintain

homeostasis in continuously changing metabolic condi-

tions. Yet, this comes at a cost during chronic metabolic

stress, inducing adaptive mechanisms that may lead to

pathologies. Until the resilience limits of these systems are

reached, metabolic imbalance can be largely reversed,

often by appropriate lifestyle intervention such as diet and/
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or exercise (Radonjic et al. 2013; Van Ommen et al. 2014).

Nevertheless, the compliance to lifestyle interventions is a

major problem, and it is not equally effective for all per-

sons (Fappa et al. 2008). Therefore, understanding the

molecular network controlling processes required for the

maintenance of metabolic health and effects of interven-

tions on this network is of interest for designing effective

lifestyle intervention programs tailored to fit person-spe-

cific (psycho)physiological makeup, as well as for the

development of drugs that will mimic broad systems effi-

cacy and minimal adverse effects of lifestyle interventions.

The case of adipose tissue is particularly interesting as it

is constituted by different depots distributed in different

parts of the body, the so-called adipose organ (Cinti 2005).

What matters is not only the fat but where it is in the body,

what type of fat and nonfat cells complement the depot and

the notion that healthy fat is when functionality to accu-

mulate fat is working to protects the body by providing a

‘‘safe home’’ for lipids, which can be toxic to other tissues

such as muscle or the liver (Owens 2014). The inappro-

priate accumulation of lipids in fat depots and, conse-

quently, in tissues that are not equipped to handle them

results in continued low-grade inflammation and, ulti-

mately, in metabolic disease, insulin resistance and type 2

diabetes (Owens 2014).

To facilitate multi-level exploration of biological rela-

tions relevant for metabolic health, we introduce the ref-

erence network concept as a platform for integration and

mining of biological interactions derived from public

resources and context-specific experimental data. Within

the FP7 BIOCLAIMS project (http://bioclaims.uib.es/),

which focuses on discovery of biomarkers for assessing the

benefits of health-promoting food compounds, we have

built a reference network using white adipose tissue

(WAT) health as an endpoint of interest. The White Adi-

pose Tissue Health Reference Network (WATRefNet) is

based on (1) experimental data obtained from 10 studies

addressing different adiposity states, (2) seven public

knowledge bases of molecular interactions, (3) expert’s

definitions of physiologically relevant processes key to

WAT health and (4) collection of relevant biomarkers of

these processes identified by BIOCLAIMS. The WAT-

RefNet comprehends multiple layers of biological com-

plexity as it contains various types of nodes and edges that

represent different biological levels (genes, clinical chem-

istry and physiological parameters measured in either

WAT, peripheral blood mononuclear cells (PBMCs), or

blood) and interactions (protein–protein interactions, pro-

tein–metabolite interactions, transcription factor targets,

microRNA targets, pathway interactions and protein–drug

interactions). The resulting network has been used to

extract subnetworks specific to physiological processes key

to WAT health, namely WAT expandability, Oxidative

capacity, Metabolic state, Oxidative stress and Tissue

inflammation. Each of these signatures represents a

mechanistically sustained composite biomarker for

assessment and quantification of the effect of interventions

on a physiological aspect that determines WAT health

status. In addition, the WATRefNet is currently being

(re)used in associated projects (Bobeldijk et al. 2014) as a

knowledge resource for extraction of relevant relationships

such as mechanisms of action, nutrient intervention targets

and assessment of health status.

Results

Definition of physiological processes determining

WAT health

To set a framework for building a reference network of

biological relations relevant for WAT health, the FP7

BIOCLAIMS consortium identified five most relevant

physiological processes determining WAT health status:

WAT (referred to as ‘‘Adipose’’) expandability (Slawik and

Vidal-Puig 2007), Oxidative capacity (De Pauw et al.

2009), Metabolic state (Klaus 2004), Oxidative stress

(Furukawa et al. 2004) and Tissue inflammation (Wellen

and Hotamisligil 2003). Subsequently, for each of these

processes, biomarkers were assigned, defined as a known

assay readout parameters that best represent or are asso-

ciated with the given physiological process. These expert-

defined biomarkers were further used as ‘‘anchor nodes’’

for connecting molecular part of the reference network to

the physiological endpoints determining WAT health. The

list of expert’s knowledge-based processes and associated

markers is provided in Table 1.

Context-specific experimental data for the WAT health

reference network

Publicly available experimental data and data from pro-

prietary FP7 BIOCLAIMS studies addressing different

adiposity states in mice, rats, monkeys or humans were

used as a context-specific input for building the reference

network. The source studies collection included 10 studies

comparing control and diet-induced obesity experimental

groups and showing statistically significant differences in

subject’s adiposity level between the two groups. The

assays included gene expression, clinical chemistry and

physiological data, measured in either WAT, PBMCs, or

blood (Table 2). The experimental data were subjected to

integrative statistical analysis, and the resulting set of

variables differentiating lean from obese groups (aggre-

gated FDR corrected p \ 0.01) was used as seed nodes

for building the reference network (n = 1,026,
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Table 1 Expert’s knowledge-based processes and associated markers as defined by the BIOCLAIMS consortium including main results from

the integrated network analysis

Name Process Tissue Nr. studies

measured

Significant

across studies

Consistent

fold-change

Nr. Seed node

neighbors

Adipocyte area Adipose expandability Adipose 0 – – 0

Adiponectin Adipose expandability Blood 0 – – 1

Adipose mass MRI Adipose expandability 0 – – 0

Adipose tissue mass Adipose expandability 6 Yes Yes 6

Brown fat mass Adipose expandability 3 Yes Yes 5

Epididymal adipose mass Adipose expandability 5 Yes Yes 3

Leptin Adipose expandability Blood 0 – – 5

Leptin Adiponectin ratio Adipose expandability Blood 5 Yes Yes 2

MEST1 Adipose expandability Adipose 4 Yes Yes 0

Subcutaneous adipose mass# Adipose expandability 1 No No 0

Visceral adipose mass Adipose expandability 4 No Yes 12

Acadvl# Metabolic state Adipose 7 No Yes 1

Acc Metabolic state Adipose 7 Yes Yes 2

Acyl carnitines Metabolic state Blood 0 – – 0

Adiponectin Metabolic state Adipose 7 No No 6

ATGL Metabolic state Adipose 7 No No 7

BCAA Metabolic state Blood 0 – – 0

CPT1 (PBMC)# Metabolic state PBMC 2 Yes No 0

CPT1a Metabolic state Adipose 7 Yes Yes 5

Cpt1b Metabolic state Adipose 6 No No 5

Dgat2# Metabolic state Adipose 7 No No 1

FABP4 Metabolic state Adipose 7 No Yes 3

FABPpm# Metabolic state Adipose 7 No No 1

FAS Metabolic state Adipose 7 No No 9

FASN Metabolic state Adipose 7 Yes Yes 7

FASN (PBMC) Metabolic state PBMC 2 Yes Yes 0

GLUT4 Metabolic state Adipose 7 Yes Yes 6

Gpat Metabolic state Adipose 7 No No 3

GyK# Metabolic state Adipose 7 No No 0

Hsl Metabolic state Adipose 7 No No 5

HSL (PBMC)# Metabolic state PBMC 1 No Yes 0

INSR Metabolic state Adipose 7 No No 9

IRS1 Metabolic state Adipose 7 No No 15

Lactate Metabolic state Blood 0 – – 0

LDHa Metabolic state Adipose 4 Yes Yes 4

LepR Metabolic state Adipose 7 No No 3

Lpl Metabolic state Adipose 7 Yes Yes 10

Lysophosphatidylinositols (plasma) Metabolic state Blood 0 – – 0

PDK Metabolic state Adipose 7 Yes Yes 3

PFK Metabolic state Adipose 7 Yes Yes 0

PGC1a Metabolic state Adipose 7 No Yes 7

PKM Metabolic state Adipose 4 Yes Yes 6

Ppara Metabolic state Adipose 7 No No 16

Resistin Metabolic state Blood 0 – – 1

RXRB (PBMC) Metabolic state PBMC 2 Yes Yes 0

SIRT1 Metabolic state Adipose 4 No No 26

Tyrosine hydroxylase level# Metabolic state Adipose 6 No No 1
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Supplemental Table 5). In addition, experimental data

were correlated with data on expert’s knowledge-defined

markers of key physiological processes, and features

showing statistically significant correlations (|r| [ 0.7)

were added to the list of seed nodes for building the

reference network (m = 75).

Prior knowledge-based molecular interaction network

To improve completeness of biological relations relevant to

WAT health status, experimental findings were extended

with prior knowledge of molecular interactions derived

from public databases. The information included protein–

protein interactions, protein–metabolite interactions, tran-

scription factor targets, microRNA targets, pathway

interactions and protein–drug interactions (Table 3,

‘‘Methods’’ section). The complete prior knowledge inter-

action network (27,667 nodes and 447,174 edges) was used

as the molecular context for seed nodes derived from

experimental data and correlation analysis.

Construction of WAT health reference network

To construct the WATRefNet, the seed nodes derived from

experimental data were integrated with molecular interac-

tion context of the prior knowledge network. The subgraph

based on the seed nodes was expanded by their first-order

neighborhood, followed by a pruning step where all seed

node neighbors that connected to only a single seed node

were removed (‘‘Methods’’ section). This resulted in the

Table 1 continued

Name Process Tissue Nr. studies

measured

Significant

across studies

Consistent

fold-change

Nr. Seed node

neighbors

UCP2 Metabolic state Adipose 7 Yes Yes 3

Visfatin Metabolic state Blood 0 – – 0

Mito density (cardiolipin) Oxidative capacity Adipose 0 – – 0

Mito density (citrate synthase level) Oxidative capacity Adipose 0 – – 0

Mito density (EM) Oxidative capacity Adipose 0 – – 0

Mito density (mt/nDNA) Oxidative capacity Adipose 2 Yes Yes 2

Uncoupled oxygen consumption Oxidative capacity Adipose 0 – – 0

Aconitase/citrate synthase activity Oxidative stress Adipose 0 – – 0

SOD1 Oxidative stress Adipose 7 Yes Yes 8

SOD2 Oxidative stress Adipose 7 Yes No 7

TRXRD2 Oxidative stress Adipose 0 – – 0

Adam8 Tissue inflammation Adipose 7 Yes Yes 0

Cd11c Tissue inflammation Adipose 4 Yes Yes 2

Cd163 Tissue inflammation Adipose 7 No No 3

Glut1 Tissue inflammation Adipose 7 No No 5

Gpx1 Tissue inflammation Adipose 0 – – 2

Hif1a Tissue inflammation Adipose 7 No No 38

Il10 Tissue inflammation Adipose 4 No No 21

Il1b Tissue inflammation Adipose 0 – – 0

Il6 Tissue inflammation Adipose 4 No No 50

Mgl2 Tissue inflammation Adipose 0 – – 0

Mrc1 Tissue inflammation Adipose 7 Yes Yes 1

Nos2 Tissue inflammation Adipose 3 No No 11

Ppargc1b# Tissue inflammation Adipose 5 No No 1

Stat6 Tissue inflammation Adipose 7 No No 5

Tnf Tissue inflammation Adipose 4 Yes Yes 48

Vegfa Tissue inflammation Adipose 7 No Yes 48

Vhl Tissue inflammation Adipose 7 No Yes 28

Expert-defined markers with consistent fold-change sign and aggregated FDR corrected p \ 0.01 are marked in bold. Expert-defined markers

which are measured but do not show either consistent change in the data or are in known molecular neighborhood of the seed nodes (nr. of seed

neighbors [1) are marked with a hash
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WATRefNet containing 6,797 nodes and 32,316 edges

(Table 3; Fig. 1). The resulting network shows typical

topology properties of biological networks (Barabási and

Oltvai 2004; Albert 2005), such as scale-freeness (power

law fit of degree distribution R2 = 0.805) and hierarchical

organization (power law fit of clustering coefficient dis-

tribution R2 = 0.541) (Supplemental Table 1).

Validation of WAT health reference network

by enrichment with disease-associated gene sets

The WATRefNet was based on information originating

from both human and animal model studies. To assess the

relevance of the reference network for human disease, we

have performed enrichment analysis of genes/proteins in

the WATRefNet among known disease-associated genes.

The disease-associated genes included 103 genes annotated

as obesity-associated in the Gene2MeSH database

(‘‘Methods’’ section). In total, 70 disease genes were

present in the reference network, representing a significant

enrichment of reference network genes in this gene set

(p = 1.09E-46). This finding supports the robustness of

WATRefNet and its validity for assessing health effects in

human intervention studies.

The reference network was also found to be enriched

with known anti-obesity drug targets (Table 4,

p = 7.46E-14), confirming that reference network repre-

sents a useful knowledge resource for finding molecular

paths to be targeted by health interventions.

In addition, the WATRefNet was also found to be

enriched with differentially expressed gene sets from an

independent study comparing chow versus high-fat feeding

conditions in LDLr-/- mice (Radonjic et al. 2013). Dif-

ferentially expressed genes in either gonadal, visceral or

subcutaneous fat depots were significantly enriched in the

WATRefNet (475 out of 1,228 differentially expressed

genes present in the reference network, Fisher exact test

p = 5.75E-171, for enrichment in individual depots, see

Table 4), confirming its robustness.

Functional annotation of WAT health reference

network

The WATRefNet can be clustered in 192 topological

modules (Fig. 1; Supplemental Table 2). Functional

annotation of these modules reveals that key biological

categories determining health status of WAT involve:

Transcription factor activity, Phosphatidylcholine meta-

bolic process, Intracellular signal transduction, G protein-

coupled receptor activity, Chromosome organization, Tri-

glyceride metabolic process, Mitotic cell cycle, Antigen

processing and presentation and RNA splicing. Interest-

ingly, regulatory modules (with GO annotation

transcription factor activity and intracellular signal trans-

duction) are among the modules with the largest number of

nodes and are central to the entire network. In contrast,

modules annotated with mitochondrial processes, metabo-

lism (e.g., Triglyceride metabolic cluster), immune process

(e.g., Antigen processing and presentation cluster), cell

division and structural remodeling are located at the

periphery of the network and are connected to the central,

regulatory part by several ‘‘bridging’’ nodes (Supplemental

Table 3, ‘‘Methods’’ section).

For instance, LPL, DGAT2, LIPE, PNPLA2 and

PNPLA3 are bridging nodes for the Triglyceride metabolic

process cluster (cluster 96). The Antigen processing and

presentation cluster (cluster 9) is linked through hsa-miR-

16, multiple HLA class II histocompatibility antigens

chains (HLA-DRB1, HLA-DRB5, HLA-DMB, HLA-DMA

and CD74) and other immune response players like IRF5

or RNASEL. Leptin, Resistin and Adiponectin form the

entry points into the Response to hormone stimulus cluster

(cluster 21). These bridging molecules may be considered

as mediators for the given biological functions, and tar-

geting these molecules by intervention may result in pro-

found effects on associated processes. In addition, bridging

nodes that are not part of the functionally annotated mod-

ules, but are top-ranked molecules based on their

betweenness centrality (i.e., KLF15 and WT1), may be

interesting candidates for further research.

Network signatures of physiological processes key

to WAT health

To identify parts of the WATRefNet that can be used as

composite biomarker signatures for specific physiological

processes key to WAT health, we have (1) extracted sub-

networks constituting molecular neighborhood of the

expert-defined markers and (2) pruned these subnetworks

to include only molecules that show statistically significant

changes in experimental data (aggregated FDR corrected

p \ 0.01) and their direct neighbors. This resulted in five

process-specific network signatures, containing a priori-

tized list of key molecules that can together be used as

robust indicators of the status of a given physiological

process in intervention studies (Supplementary Table 4).

Figure 2 shows a network visualization of the Adipose

expandability signature, where the molecular interactions

are visualized together with different relevant criteria, such

as direction of gene expression, significance of differential

expression and centrality of each marker in the network. As

molecules constituting the network signatures are mecha-

nistically linked to the physiological process of interest,

their change upon intervention may suggest a cause–effect

relationship between molecular changes and a health

effect.
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Using network signatures for evaluating health effects

of interventions

To assess the potential of the network signatures to be used

as robust biomarkers mechanistically linked to physiolog-

ical processes, which in turn determine WAT health, we

have analyzed data of five intervention studies for their

profile match with the network signatures. Gene expression

changes in WAT of LDLr-/- mice upon one dietary and

four drug interventions (Radonjic et al. 2013) were overlaid

over the signatures, and the matching scores were calcu-

lated. The matching score was based on the correlation

between fold-changes of differentially expressed genes in

the network signature and the corresponding fold-changes

resulting from the control versus intervention comparison

(‘‘Methods’’ section). A positive score represents a good

correlation of the intervention with the reference expres-

sion, indicating that the intervention resulted in a healthy

profile. A negative score indicates that the intervention

resulted in an unhealthy profile. Figure 3 shows a heatmap

of the matching scores for each signature and intervention

combination. In line with previously reported ability of

dietary lifestyle intervention to revert disease parameters

(Radonjic et al. 2013), the matching scores indicate a

healthy signature for this intervention for all network sig-

natures. The signatures also reveal adipose depot-specific

responses to the drug interventions. The response in

gonadal and subcutaneous WAT results in a positive score,

while the scores in visceral WAT are mixed and closer to

zero indicating a weaker and/or less consistent effect of the

intervention. The effect of salicylate intervention on Tissue

inflammation signature results in particularly diverse

matching scores in the three WAT depots (positive in

gonadal, neutral in subcutaneous and negative in visceral),

suggesting an interaction between drug mechanism of

action and specific metabolic role of the three WAT depots.

To test the statistical significance of difference between

three depots, we have performed a one-way ANOVA test

on scores for drug interventions (within each signature)

comparing the three depots. In summary, significant dif-

ference among depots is observed for the Oxidative stress

(p value 0.045), Metabolic state (p value 0.007) and Tissue

inflammation (p value 0.01) network signatures. In con-

trast, the Adipose expandability signature is rather

Table 2 Experimental datasets used to build the white adipose tissue health reference network

Title Accession/

Reference

Species Tissue Data type Source

Dietary restriction of mice on a high-fat diet induces

substrate efficiency and improves metabolic health

GSE27213 Mouse Adipose

(epididymal)

Transcriptomics,

Physiology, Clinical

chemistry

Bioclaims

Short-term, high-fat feeding-induced changes in white

adipose tissue gene expression are highly predictive

for long-term changes

GSE38337 Mouse Adipose

(epididymal)

Transcriptomics,

physiology, clinical

chemistry

Bioclaims

Early biomarkers identified in a rat model of a

healthier phenotype based on early postnatal dietary

intervention may predict the response to an

obesogenic environment in adulthood

Torrens et al. Rat PBMC, adipose

(retroperitoneal)

Transcriptomics

(PBMC), qPCR

(adipose), clinical

chemistry

Bioclaims

n - 3 PUFAs in obese and non-obese volunteers See

Supplemental

Data 2

Human Blood Clinical chemistry,

physiology

Bioclaims

Short-term fatty acid intervention elicits differential

gene expression responses in adipose tissue from

lean and overweight men

E-TABM-377 Human Adipose

(subcutaneous)

Transcriptomics External

Assessment of diet-induced obese rats as an obesity

model by comparative functional genomics

GSE8700 Rat Adipose

(epididymal)

Transcriptomics External

Diet and feeding condition induced gene expression in

rat peripheral blood mononuclear cells

GSE14497 Rat PBMC Transcriptomics External

Diabetes biomarker disease progression study in rat

adipose tissue

GSE13268 Rat Adipose

(abdominal)

Transcriptomics External

Time-course microarrays reveal early activation of the

immune transcriptome and adipokine dysregulation

leads to fibrosis in visceral adipose depots during

diet-induced obesity

GSE39549 Mouse Adipose

(visceral)

Transcriptomics External

Resveratrol improves adipose insulin signaling and

reduces the inflammatory response in adipose tissue

of rhesus monkeys on a high-fat, high-sugar diet

GSE50005 Macaca

mulatta

Adipose

(Subcutaneous)

Transcriptomics External
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comparable among three depots (p value 0.49). In addition,

in the gonadal depot, rosiglitazone intervention is markedly

different than the other interventions. Although both ros-

iglitazone and pioglitazone act as PPARy agonists, they

lead to different clinical outcomes (Deeg and Tan 2008),

and differences in their specific signatures may help to

elucidate the mechanisms responsible for this difference

(Supplemental Table 6).

Evaluation of predefined expert-based biomarkers

in the context of WATRefNet and network signatures

Finally, we have evaluated novel insights emerging from

the WATRefNet and network signatures, compared to

previously known, expert-defined biomarkers of WAT

health. We first investigated expert-defined markers for

their relevance according to the data-driven approach

(Table 1). Out of 75 expert-defined markers, 56 were

measured in at least one of the experimental datasets and

23 of these showed consistent change across all datasets

(consistent fold-change sign and aggregated FDR corrected

p \ 0.01). Thus, only one-third of expert-defined bio-

markers are reconfirmed as eligible biomarkers by a purely

data-driven approach. If we include additional markers

based on their molecular context (i.e., being direct neigh-

bor of at least 2 data-driven seed nodes), additional 24

expert-defined biomarkers can be included in the network

as relevant, based on indirect association. The remaining

nine expert-defined biomarkers which have been measured

but do not show either consistent change in the data or are

in known molecular neighborhood of the seed nodes are—

according to our analysis—of questionable relevance as

biomarkers of adiposity state (Table 1).

Added value of network signatures as biomarkers

of WAT health

The expert-defined biomarkers are per definition included

in the network signatures for WAT health. We next asked

whether other, newly discovered biomarkers within these

signatures may in fact offer a more reliable picture of the

adipose state than the expert-defined ones. Inspection of

individual nodes in the network signatures identifies novel

molecules, which outperform expert-based ones (Supple-

mentary Table 4). For instance, in the ‘‘Oxidative stress’’

network signature, there are 20 novel markers with lower

aggregated p value then expert-defined biomarkers LPL

and LDHA. Investigation of biological functions of these

20 markers as a group suggests that changes in extracel-

lular matrix organization and leukocyte migration may be

a good indicator of oxidative stress in WAT. In turn, the

‘‘Metabolic state’’ signature confirms the relevance of

expert-defined biomarkers ACACA, FASN and PDK1 (all

within top four markers based on aggregated p value).

Table 3 Number of nodes and edges in the complete knowledge-based network and the white adipose tissue reference network (WATRefNet),

total and per tissue (i.e., blood, physiology, adipose and PBMC)

Complete knowledge-based

network

Total WATRefNet Blood Physiology Adipose PBMC

Nodes

Gene/protein 14,488 4,361 23 0 4,234 104

Metabolite 12,729 2,349 18 0 2,241 90

Non-molecular 18 23 5 11 7 0

miRNA 432 64 0 0 64 0

Total 27,667 6,797 46 11 6,546 194

Edges

DrugBank 9,494 504 0 0 504 0

KEGG 195,867 5,682 1 0 5,622 59

STITCH 76,269 6,973 47 0 6,691 235

STRING 155,971 17,910 46 0 17,745 119

TFe 1,929 259 1 0 258 0

WikiPathways 18,601 2,989 0 0 2,983 6

MirTarBase 3,597 265 0 0 265 0

Correlation 0 32 1 28 3 0

Total (merged) 447,174 32,171 95 28 31,645 403

Different resources for edges comprise different edge types (DrugBank: drug–target interactions, KEGG: manually curated metabolic and

signaling pathways, STITCH: chemical–protein interactions, STRING: protein–protein interactions and associations, TFe: transcription factor–

target interactions, WikiPathways: manually curated metabolic and signaling pathways, MirTarBase: manually curated miRNA–target

interactions
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Interestingly, the next four top-ranked molecules are

newly discovered, and all involved in cholesterol bio-

synthesis (G6PD, CYP51A1, PMVK and FDPS). In

addition to using network signatures as a biomarker of

health, they may be explored in a multitude of ways and

hint to underlying mechanisms. This may lead to devel-

opment of mechanism-driven, noninvasive assays for

assessment of WAT health (e.g., leukocyte status for

oxidative stress or plasma cholesterol levels as indicator

of WAT metabolic status).

Discussion

We have constructed a WATRefNet as a resource for

discovery and prioritization of mechanistically sup-

ported biomarkers for health benefits of food com-

pounds. The presented work provides a step forward in

understanding and quantifying health by shifting the

focus from single, correlation-based biomarkers toward

composite, mechanistically supported biomarker signa-

tures. Also, the reference network concept can be used

Fig. 1 Visualization of the white adipose tissue health reference

network. Nodes are colored by clustering based on network topology.

Clusters are annotated with biological function based on GO

overrepresentation analysis (‘‘Methods’’). Node size is scaled accord-

ing to degree (number of interactions)

Table 4 Enrichment of the White Adipose Tissue reference network (WATRefNet) with different disease-relevant gene sets

Obesity ADT all depots ADT visceral ADT subcutaneous ADT gonadal Drug targets

Total genes 47,938 47,938 47,938 47,938 47,938 47,938

Total disease genes 103 1,208 0 77 1,148 54

AdipRefNet genes 4,194 4,194 4,194 4,194 4,194 4,194

AdipRefNet disease genes 70 475 0 35 454 27

Fisher exact test p value 2.59E-49 1.44E-190 1 2.02E-17 4.55E-183 4.60E-15

‘‘Total genes’’ refers to total number of human genes in Entrez gene database. Obesity: Genes linked to MeSH term ‘‘Obesity’’, ADT:

differentially expressed genes in the anti-diabetic treatment study, Drug targets: anti-obesity drug targets from DrugBank
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as a solution for integration and mining of context-

specific multi-layered datasets and prior knowledge on

biological interactions for different health-related pro-

cesses. This results in a sustainable knowledge resource

for assessment of health status and effects of health-

improving interventions.

Understanding and quantifying health

Achieving and maintaining optimal health remains a chal-

lenging task due to complexity of the involved factors. For

instance, drug interventions are typically designed to

strongly target a single-defined molecule—a strategy that

Fig. 2 The network signature for process Adipose expandability.

Nodes are colored according to the sign of the average fold-change

across different studies (blue negative and red positive). Nodes with a

green border are seed nodes (i.e., significant aggregated p-value and

consistent fold-change across studies), and other nodes are neighbors

of these seed nodes and included in the network to add biological

context. Solid edges indicate knowledge-based molecular interac-

tions; dotted lines indicate interactions based on correlations in the

reference datasets
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promotes efficacy but increases the risk of adverse effects.

In cases where homeostasis is still not fully disturbed, die-

tary and other lifestyle interventions may be particularly

suitable to improve health or reverse a course of disease due

to their mild effects on a broad collection of different

mechanisms, often across different organs. The proposed

network-based data analysis strategy facilitates underpin-

ning of system-wide effects of dietary and lifestyle inter-

ventions, allowing comprehensive mapping of factors

relevant for specific health area—in this case WAT health.

As the resulting reference network is built in a context of

diet-induced change in adiposity state, it provides a ‘‘heal-

thy’’ versus ‘‘less healthy’’ WAT-specific signature. As

such, the WATRefNet is a resource for extraction of rele-

vant relationships and features of interest (e.g., mechanisms,

biomarkers and intervention targets; Fig. 1, Supplemental

Table 2), but also allows quantification of a ‘‘match’’ of

molecular changes induced by interventions to the one of the

‘‘healthy’’ signature. The possibility to score the health

effects of interventions makes such context-specific refer-

ence networks a valuable tool for quantitative assessment of

health effects of interventions, as demonstrated by the

example of five anti-diabetic interventions (Fig. 3).

Physiologically relevant biomarker signatures

The primary goal of the FP7 BIOCLAIMS project is to

identify and characterize robust, nutrigenomic-based

biomarkers predictive of a healthy metabolic phenotype

facing perturbation of homeostasis. In particular, the focus

is on developing biomarkers for mapping the intrinsic

effects of food components, which together might provide

scientific evidence to help support future health claims on

food. In the context of FP7 BIOCLAIMS project goals, and

within a broader scope of supporting approval of food

health effect claims by the European Food Standards

Agency (EFSA 2006), we have here exploited the reference

network concept for extraction of robust biomarker signa-

tures for assessment of health status and health benefits of

interventions. Its validation in practical developments in

the food/health economic sector should be tested in humans

under a number of different conditions.

The key requirement for biomarker definition within

our approach is that it reflects a physiologically relevant

process, crucial for determining health state of a system

under investigation. As the definition of health imple-

ments a view of optimally functioning human physiology

as the ability to adequately adapt to one’s environment

(Kitano et al. 2004; Stelling et al. 2004), the processes

were selected based on their relevance for maintaining

systems flexibility or robustness. This flexibility can be

established and maintained at all levels of the system,

e.g., whole body, organ, cellular and subcellular. The joint

effort of BIOCLAIMS consortium members resulted in

definition of key ‘‘robustness’’ processes of WAT health,

namely Adipose expandability, Oxidative capacity, Met-

abolic state, Oxidative stress and Tissue inflammation.

These processes are therefore used here as a basis for

conveying changes observed in biomarker signatures to

WAT health benefits.

Another innovative aspect of our biomarker definition

is the inclusion of mechanism-based selection criteria to

complement correlation statistics variable selection

methods. This is achieved in the first instance by (1)

requirement of a biomarker to be associated with one of

predefined physiologically relevant processes and (2)

including the mechanistic context, i.e., molecular inter-

action neighborhood of a given biomarker. This approach

increases the chance that a selected biomarker is not only

statistically significant, but also biologically relevant for

the health endpoint of interest. In addition, we extract a

composite biomarker signature instead of focusing on

isolated entities, which likely further increases the

robustness of biomarker selection. This resulted in iden-

tification of five mechanistically supported biomarker

signatures, functionally and statistically linked to the

physiological processes determining robustness of WAT

and therefore to the WAT health (Supplemental Table 4).

Importantly, based on these signatures, a matching score

can be calculated to quantify health effects of interven-

tions (Fig. 3).
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ADT gonadal.Lifestyle − HF16wk
ADT gonadal.Pioglitazone − HF16wk
ADT gonadal.Rosiglitazone − HF16wk
ADT gonadal.Salicylate − HF16wk
ADT gonadal.T0901317 − HF16wk

ADT subcutaneous.Lifestyle − HF16wk
ADT subcutaneous.Pioglitazone − HF16wk
ADT subcutaneous.Rosiglitazone − HF16wk
ADT subcutaneous.Salicylate − HF16wk
ADT subcutaneous.T0901317 − HF16wk

ADT visceral.Lifestyle − HF16wk
ADT visceral.Pioglitazone − HF16wk
ADT visceral.Rosiglitazone − HF16wk
ADT visceral.Salicylate − HF16wk
ADT visceral.T0901317 − HF16wk

Fig. 3 Overlay of intervention study (GEO Accession GSE57659) on

the network signatures for specific processes related to white adipose

tissue health. The heatmap shows the matching scores for each

signature and intervention combination, where red indicates a positive

score (positive ‘‘healthy’’ effect) and blue indicates a negative score

(negative ‘‘disease’’ effect). Matching scores for the Oxidative

capacity signature could not be calculated for any of the interventions

due to lack of sufficient measurements of the markers in this signature
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Each individual biomarker within a signature can be

prioritized based on different relevance criteria, e.g., cen-

trality (importance) in the network, magnitude of changes

in experimental data, annotation, the ability of the mole-

cule to be secreted and cellular localization. (Supplemental

Table 4). While such ranking of individual markers allows

flexibility in designing scope of validation experiments

(e.g., if only a limited number of biomarkers can be mea-

sured in a clinical study), the availability of the complete

molecular context facilitates exploration of data and

knowledge to generate novel hypotheses and drive devel-

opment of improved interventions (Kelder et al. 2010).

An important characteristic of a biomarker is its feasi-

bility to be measured in human clinical studies. Therefore,

biomarkers which are indicative of tissue health status but

which can be measured by noninvasive methods (e.g., in

plasma or urine samples) are of great practical value. The

WATRefNet can be exploited for this purpose for identi-

fication of markers derived from PBMC or plasma samples

and which are located in the network neighborhood of five

biomarker signatures. This concept would ideally be

expanded to include other types of noninvasive assays or

measurement platforms, such as molecular imaging or

metabolomics and (epi)genetics in accessible tissues or

body fluids.

Reference network as a sustainable knowledge resource

for assessment of health status and effects

of interventions

To meet the challenge of comprehending complex bio-

logical relations relevant for health, we introduce here the

concept of reference networks as a mean for multi-level

mapping of systems components and interactions between

them. We use reference networks as a platform for inte-

gration and mining of biological interactions derived from

public resources and context-specific experimental data.

This enables understanding of the high-level organization

of processes that are required for maintenance of WAT

health, bridging information at the level of organs or tissue,

to physiological processes to molecular interactions. Spe-

cifically, the reference network platform facilitates the

following functionalities.

Integration of diverse and abundant data

To warrant comprehensiveness and robustness of the

WATRefNet, we have integrated biological information

originating from multiple experimental evidences (i.e., 10

studies, five species, three assay platforms and four tis-

sues), multiple prior knowledge resources of molecular

interactions (7 public knowledge databases) and domain

knowledge within BIOCLAIMS.

Mining of features and relations

Relying on a graph-based theory and prior knowledge

integration, network biology facilitates extraction of fea-

tures (biomarkers and intervention targets) and relations

(mechanisms, codependencies and causality), which are

not only statistically significant but also biologically rele-

vant. Involving biology context into data mining is espe-

cially relevant in nutritional research, as typically mild and

broad effects can be overlooked by stringent pure statistical

methods (Ideker et al. 2011). In addition, accounting for

molecular context (e.g., pathway cross talk) provides

valuable information for understanding mechanisms

underlying health status and intervention effects and is

important to consider when designing or benchmarking

novel interventions. Good examples of this concept are

Leptin and Adiponectin, known indicators of WAT health

status (Guerre-Millo 2004). The WATRefNet confirms an

important role for these molecules, as Leptin, Adiponectin

and Resistin represent key nodes linking peripheral

Response to hormone stimulus cluster to the central regu-

latory cluster of the WATRefNet. Similarly, we discover

PNPLA2 and PNPLA3, for which genetic variations have

previously been associated with obesity (Johansson et al.

2008) and non-alcoholic fatty liver disease (Romeo et al.

2008), as the key nodes bridging Triglyceride metabolic

process cluster with central regulatory mechanisms. In

addition, we found Hsa-miR-16 as key node linking the

antigen processing and presentation cluster to the reference

network. This is a relatively unknown miRNA that has

been mostly associated with various cancers (Calin et al.

2008), and our results indicate relevance in context of the

inflammatory process in WAT health as well. Finally,

KLF15 and WT1 emerge from our analysis as bridging

nodes, top ranked according to betweenness centrality, but

not constituting functionally annotated modules. KLF15

has previously been associated with glucose-induced

insulin secretion in adipocytes, confirming its relevance for

adiposity and WAT health (Nagare et al. 2011). In turn,

WT1 is involved in development and tumorigenesis (Toska

and Roberts 2014), and it may be an attractive novel can-

didate for further analysis in the context of WAT health.

Organizing and storing of knowledge (instead of data)

in form of relations

Instead of dispersed data (i.e., dozens of data files con-

taining tens of thousands data points, scattered across six

BIOCLAIMS institutes and different public repositories, in

different formats and annotations), we have generated a

traceable, transparent, annotated and accessible resource of

knowledge about WAT health, documented in a form of

entities and their relations. This resource is available in a
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computer readable formats (Supplementary Dataset 1),

ready for efficient mining for different aspects of interest

[i.e., by applying network-based path finding (Kelder et al.

2011)], prioritization or clustering algorithms (Warde-

Farley et al. 2010), cross-reference with other network

signatures (Wang et al. 2012), or querying specific parts of

interest], as information layers and relations can be flexibly

extracted.

Sustainability of generated data and knowledge

The reference networks concept provides a sustainable

solution for use and reuse of data that has been incorpo-

rated into the network. Reference networks can be stored in

a dedicated infrastructure (i.e., network library), allowing

research question-driven mining at any future time point

(NDEx 2014). In addition, multiple reference networks can

be readily integrated, for instance, to address several rela-

ted health aspects (Shannon et al. 2003). Importantly,

network architecture allows expansion and refinement of

the existing model upon incorporation of novel informa-

tion, meaning that if more or better evidence becomes

available, the network model will improve.

Together, these properties imply that the value of a

reference network will increase as the knowledge increa-

ses, which will in turn facilitate novel discovery, hypoth-

esis forming and validation—therefore reinforcing each

other. This concept holds a promise of growth in scientific

value, where newly initiated research will optimally build

upon prior experience—our own and that of others. Within

the FP7 BIOCLAIMS project, we have demonstrated the

viability of this concept by integration of data and

knowledge across six different European institutes, pub-

licly available experimental datasets and knowledge on

molecular interactions. The obtained biomarker signatures

for five key physiological processes determining health of

WAT are already being used as an input for analysis in

other related projects focusing on metabolic health (Bob-

eldijk et al. 2014).

Application of this and similar data management models

allows cross talk between different (parts of) projects and

will therefore generate an enhanced output. This helps to

improve our understanding of the causes and mechanisms

underlying health and disease and obtain insight in treat-

ment effectiveness. Hereby, we demonstrate the impor-

tance of availability of open data and joint data/knowledge

mining efforts for successful implementation of such

models.

Limitations and future perspectives

The undertaken approach is intrinsically limited by avail-

ability and quality of data used for the analysis. Despite a

fairly comprehensive mapping of relations relevant for

WAT health, the bias in, e.g., data and/or tissue types, is

unavoidable. For instance, transcriptome data availability

overrules other omics assay platforms, and WAT tran-

scriptome data obtained from rodent models are more

abundant than such data from human studies. In addition, it

has been shown that different fat depots, such as subcuta-

neous, visceral or gonadal fat, have different roles and

metabolic properties (Caesar et al. 2010), and their trans-

lational value is also questionable due to different spatial

distribution in human and animal models. Ideally, these

differences would be accounted for by defining adipose

depot-specific layers in the WATRefNet. Currently, the

available depot-specific data are insufficient to properly

address this aspect. Apart from limitation in experimental

data, sources of prior knowledge of molecular interactions

have different reliability (Von Mering et al. 2002). For

instance, protein–protein interactions derived from in-

depth mechanistic protein interaction analysis will likely

yield less false-positive findings than high-throughput

screens, such as yeast two-hybrid system. To account for

these different confidence levels, elements in the network

may be assigned different weights, based on reliability of

the evidence source. Another approach to correct for

relations that could potentially be found by chance—

especially when used as a series of associations constitut-

ing the analysis workflow—is to compare the resulting

network to the randomized network starting form an

equivalent set of nodes (Aittokallio and Schwikowski

2006). In addition, to improve sensitivity of the network

signature scores, nodes could be weighted based on their

biological/mechanistic relevance. One possible method of

weighting individual parameters would be to manually

define higher weights for established physiological readout

parameters. A more unbiased model of assigning relevance

weights could be made using network topology features—

assuming that our knowledge on underlying molecular

network is sufficiently complete. This is an emerging field,

and, to the best of our knowledge, this approach has not yet

been extensively benchmarked to be routinely included in

our current analysis. We envision that resources and

models (including signatures provided in this work) will be

refined in parallel with growth of available knowledge,

experimental evidence and network models. Ultimately,

the optimal solution to refinement of network models is to

incorporate statistically sound and biologically supported

checkpoints at each workflow step, and where possible,

experimentally validate anticipated relations. The pre-

requisite for successful reference network analysis is a

deep understanding of both technological requirements and

the biological context, allowing careful selection of data

and knowledge resources. To achieve this, a joint effort and

multi-disciplinary approach are a pro, possibly involving
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network scientists, mathematicians, statisticians, bioinfor-

maticians, biologists, nutritionists, medical doctors and

policy makers. There is a need to establish a bridge

between the prioritized biomarkers and the adaptation of

the practical requirements currently established for bio-

markers and risk factors in the context of health claims

made on food in Europe (EFSA Panel on Dietetic Products

N and A (NDA) 2011). The application of the present

method may provide important information to show the

biological plausibility of specific effects of foods on health,

which acceptability under the current European Regulation

(EC) N8 1924/2006 on health claims made on food, will be

difficult to be based only on a few systematic well-con-

trolled human intervention studies.

Although the method has been developed focusing on

diet-induced changes in WAT health, the concept is gen-

eric and applicable to the broader area of (metabolic)

health and disease. This provides opportunities for sup-

porting a wide range of applications, such as design of

improved food or drug interventions, substantiation of

health claims of food products, efficacy/safety analysis of

drug therapies and pinpointing health effects of combina-

tion therapies. Finally, the relevant implications of refer-

ence network approach are a potential to apply it in a

‘‘n = 1’’ approach, leading to extraction of person-specific

health signatures and quantification of person-specific

health effects compared to, for example, a population pool

(Chen et al. 2012). This will facilitate development of

personalized interventions and more efficient, subgroup-

specific intervention protocols in clinical trials. Together,

the health reference network concept as a sustainable

knowledge resource and associated robust health biomarker

signatures open numerous new avenues for assessing and

quantifying health and the effect of interventions on

thereof.

Methods

Collection and formatting of experimental data

Experimental data across 10 studies (Table 2) were col-

lected from public repositories [GEO: GSE27213 (Dui-

venvoorde et al. 2011), GSE8700 (Li et al. 2008),

GSE14497 (Caimari et al. 2010), GSE13268 (Xue et al.

2011), GSE39549, GSE38337 (Voigt et al. 2013),

GSE50005 (Jimenez-Gomez et al. 2013), ArrayExpress:

E-TABM-377 (Van Erk et al. 2008)] and BIOCLAIMS

consortium members [(Torrens et al. 2014) and Supple-

mental Data 2]. All data were annotated to unified identi-

fiers (Entrez Gene for genes/proteins, HMDB for

metabolites) where possible, and names of physiological

parameters were normalized to be consistent across

different studies and match the expert’s defined markers

(Table 1).

Within-study statistics

For each dataset, a control (healthy and lean) and disease

(high-fat diet and obese) group was defined, and a group-

wise comparison was performed between these groups

within each dataset. For transcriptomics data, the R pack-

age limma (Smyth 2004) was used to test for differential

expression between the groups. For non-transcriptomics

markers, a Student’s t test was applied.

Integration of statistics across studies

To combine the within-study statistics across the different

datasets, an aggregated p was calculated for each marker

using Fisher’s method (Mosteller and Fisher 1948). The

resulting p values were corrected for multiple testing using

the Benjamini–Hochberg method for controlling the FDR

(Benjamini and Hochberg 1995).

Correlation analysis

Each expert’s defined marker was correlated within each

study with all other markers measured in that study.

Spearman’s rank correlation coefficient was calculated for

all subjects of the healthy and disease groups, and corre-

lations with an absolute correlation coefficient above 0.7

were included in construction of the reference network.

Selection of seed nodes

A set of seed nodes relevant for WAT health was defined

based on expert’s defined markers (Table 1) and markers

derived from the analysis of the datasets. Seed nodes based

on data analysis were selected based on the following

criteria:

1. Aggregated p \ 0.01.

2. Fold-change between health and disease group should

be equal for all studies where the changes for the

marker are significant according to criteria 1, i.e., the

marker should change in the same direction consis-

tently across all datasets.

Seed nodes based on correlations are included by selecting

all markers that correlate with one or more of the expert’s

defined markers (absolute correlation coefficient [0.7).
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Building the prior knowledge-based molecular

interaction network

An integrated molecular interaction network was built by

integrating the following network resources:

1. Protein–protein functional interactions from STRING

(version 9.05) (Jensen et al. 2009), including all

interactions with score [0.4 and excluding NLP-

derived interactions.

2. Protein–metabolite interactions from STITCH (version

3.1) (Kuhn et al. 2010), including all interactions with

score [0.4.

3. Transcription factor targets from the Transcription

Factor Encyclopedia (version 2014-02-13) (Yusuf

et al. 2012).

4. WikiPathways human pathways (Analysis collection,

version 2013-08-14) (Kelder et al. 2012).

5. Gene–miRNA interactions from MirTarBase (from

CyTargetLinker collection, version 2012-10-12) (Kut-

mon et al. 2013; Hsu et al. 2011).

6. Protein–drug interactions from DrugBank (from Cy-

TargetLinker collection, version 2012-10-12) (Kutmon

et al. 2013; Wishart et al. 2006).

Nodes were annotated to Entrez Gene (for genes/

proteins) and HMDB (for metabolites) whenever possi-

ble using the BridgeDb library (Van Iersel et al. 2010).

If no mapping to these identifier systems could be

found, the original annotation was retained (e.g., for

miRNAs). Edges were considered undirected, and edges

were merged whenever an interaction was defined in

multiple resources. Information regarding datasource of

origin for each edge was retained in the network and is

available in the network as edge attributes (Supple-

mentary Data 1).

Construction of WAT health reference network

The adipose health reference network (WATRefNet) was

constructed from the combination of the integrated

knowledge-based molecular interaction network and the

significant correlations, resulting from the integrated data

analysis. The WATRefNet was extracted from this network

by taking the subgraph defined by the seed nodes and their

first-order neighborhood. After extracting the subgraph, a

pruning step was performed in which all seed node

neighbors that connected to only a single seed node were

removed. This step was performed to ensure that nodes

added based on the neighborhood to the seed nodes provide

relevant biological context and contribute to connecting

different seed nodes. Topology parameters of the WAT-

RefNet were calculated using the Network Analyzer App

in Cytoscape (Assenov et al. 2008).

Topology-based clustering and functional annotation

The WATRefNet was clustered into topological modules

using the WalkTrap community detection algorithm (Pons

and Latapy 2005). For each resulting cluster, overrepre-

sentation analysis of the genes in the cluster with Gene

Ontology terms from the Biological Process, Molecular

Function and Cellular Location ontologies was performed

using the GO enrichment Analysis in the WGCNA R

library (Langfelder and Horvath 2008). All significantly

overrepresented GO terms (p \ 0.0001) were selected and

listed in Supplemental Table 2.

Validation with external gene sets

To validate the relevance of the WATRefNet, it was tested

for enrichment with different external list of genes relevant

to adipose health. Enrichment was tested using the Fisher

exact test, with as reference set the complete collection of

human Entrez Genes. The set of genes related to obesity

was queried from the Gene2MeSH tool (Ade et al. 2007),

resulting in 103 genes associated with the MeSH term

‘‘Obesity.’’ The sets of differentially expressed genes (FDR

corrected p \ 0.05) in an independent transcriptomics

dataset were defined based on transcriptomics measure-

ments in different adipose depots (subcutaneous, visceral

and gonadal) for the comparison of chow versus high-fat

feeding conditions in LDLr-/- mice (Radonjic et al.

2013) (GEO Accession GSE57659). Although we are of

the opinion that nutritional studies should make use of

comparative purified diets to dissect effects of diets

(Hoevenaars et al. 2012), we think that inclusion of a study

that uses chow as comparator is warranted in this case,

because the analysis focuses on contrast rather than on

specific effects of a diet. The analysis resulted in 1,228

differentially expressed unique genes across all depots

(Visceral: 2, Subcutaneous: 79 and Gonadal: 1,167). The

set of 55 anti-obesity drug targets was obtained from

DrugBank (Wishart et al. 2006).

Identification of nodes bridging peripheral and central

network clusters

The two central clusters in the network with GO annotation

transcription factor activity and intracellular signal trans-

duction were grouped and collapsed into singular nodes

representing all module members. The module node retains

all edges of its members. After collapsing the clusters, the

betweenness centrality was calculated using the Network

Analyzer App in Cytoscape (Assenov et al. 2008). The

betweenness centrality was calculated based on all shortest

paths in an undirected, unweighted network. This allows

for the case that nodes can have the same betweenness. The
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betweenness centrality was normalized based on the

number of nodes: 1/(n-1) 9 (n-2) and independent from

the betweenness calculated, allowing for having nodes of

equal betweenness even after normalization. Nodes with a

betweenness centrality larger the 90 % quantile (2.86E-4)

for each module were identified as bridging nodes.

Extraction of process-specific network signatures

A network signature was extracted from the WATRefNet

for each of the five physiological processes (Table 1). First,

a subgraph was extracted based on first-order neighborhood

of all expert’s defined markers associated with the process.

Next, this subgraph was pruned by excluding all nodes that

are not direct neighbors of a marker that was part of the

data-driven seed nodes (shows statistically significant

changes in the experimental data, aggregated FDR cor-

rected p \ 0.01).

Matching network signatures with interventions

Signatures were matched to gene expression changes in

WAT of LDLr-/- mice upon one dietary and four drug

interventions (Radonjic et al. 2013) to assess the health

effect of the interventions. A matching score was calcu-

lated for each signature and intervention, defined as the

Spearman correlation of fold-changes of the significantly

changed markers in the signature and the fold-changes

resulting from the intervention. Correlations were calcu-

lated only if data for at least three significantly changed

markers were available for both the signature and the

intervention dataset.

Network analysis and visualization

Network analysis was performed in igraph (Csárdi and

Nepusz 2006) and Cytoscape (Shannon et al. 2003). Net-

work visualizations were performed in Gephi (Gephi et al.

2014) (Fig. 1) and Cytoscape (Fig. 2). The WATRefNet is

available in computer readable format as RData file and

Cytoscape session file (Supplemental Dataset 1).
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