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Abstract Obesity is characterized by an excess storage of

body fat and promotes the risk for complex disease traits

such as diabetes mellitus and cardiovascular diseases. The

obesity prevalence in Europe is rising and meanwhile

ranges from 10 to 20% in men and 15–25% in women.

Body fat accumulation occurs in states of positive energy

balance and is favored by interactions among environ-

mental, psychosocial and genetic factors. Energy balance is

regulated by a complex neuronal network of anorexigenic

and orexigenic neurons which integrates peripheral and

central hormonal and neuronal signals relaying information

on the metabolic status of organs and tissues in the body. A

key component of this network is the central melanocortin

pathway in the hypothalamus that elicits metabolic and

behavioral adaptations for the maintenance of energy

homeostasis. Genetic defects in this system cause obesity

in mice and humans. In this review we emphasize mouse

models with spontaneous natural mutations as well as tar-

geted mutations that contributed to our understanding of

the central melanocortin system function in the control of

energy balance.
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Obesity

Obesity is characterized by an excess of body fat and

promotes the risk for the development of complex disease

traits like diabetes mellitus, cardiovascular dysfunctions,

certain forms of cancer and sleep-breathing disorders.

World Health Organization defines obesity by a body mass

index (BMI) larger than 30 kg/m2, whereas overweight is

defined by a BMI between 25 and 29.9 kg/m2. The obesity

prevalence in Europe ranges from 10 to 20% in men and

15–25% in woman. Body fat mass is influenced by inter-

actions among environmental, psychosocial and genetic

factors. Promotion of positive energy balance causes

obesity in humans as well as in mice (for review see [4, 20,

33]).

The mouse has proven itself as an excellent model for

investigations on human diseases as development and

genetics are similar in mouse and man. Furthermore,

genetic engineering techniques in the mouse became well-

established and reliable tools in the last two decades. In this

mini review we highlight different mouse models which

have been instrumental to study body weight regulation

and the development of obesity.

The melanocortin system and its role in the regulation

of energy homeostasis

The lipostatic hypothesis for the control of food intake

postulates that adipose tissue produces a hormone in

proportion to the amount of fat and acts on the central

nervous system to reduce feeding and increase energy

expenditure for maintaining energy balance [32].

According to this hypothesis, leptin was identified as the

peripheral hormonal signal secreted by adipocytes in
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proportion to body fat mass. Positional cloning of leptin

substantiated the involvement of the endocrine system in

the regulation of body weight [54]. Deficiency of leptin in

obese (ob/ob) mice leads to hyperphagia and reduced

energy expenditure [16, 30]. Leptin acts on the leptin

receptor, a single-transmembrane-domain receptor of the

cytokine receptor family. The db/db mouse is character-

ized by severe obesity and carries a naturally occurring

mutation in the leptin receptor gene. This mutation causes

an aberrant splicing which results in the production of a

truncated leptin receptor [11, 28, 37]. Energy-related sig-

nals from the periphery (e.g. leptin) are integrated in the

arcuate nucleus of the hypothalamus by two subsets of

neurons either expressing pro-opiomelanocortin (POMC)

or agouti-related protein (AGRP). These neurons project

to melanocortin-4-receptor (MC4R) expressing neurons

in other hypothalamic regions like the paraventricular

nucleus (PVN). In states of high caloric excess, elevated

leptin levels stimulate anorexigenic Pomc neurons and

inhibit orexigenic Agrp neurons [12, 31]. In second order

neurons MC4R-signaling promotes negative energy bal-

ance by increasing energy expenditure and reducing food

intake [10, 29, 49]. In times of fasting low leptin levels

inactivate Pomc neurons and activate Agrp neurons. Agrp

release increases food intake and weight gain by inhibiting

signaling at the MC4R (for review see [3, 45]) (see

Fig. 1).

Mouse models with mutations in the melanocortin

system

In this section we point out mouse models that allowed the

compilation of the melanocortin system described above.

The below-mentioned mouse models are summarized in

Table 1.

Intensive studies in several mouse models helped to

analyze the function of certain genes that are part of the

central melanocortin system. The first hint towards the role

of melanocortins in the regulation of body weight arose

from the analysis of the agouti yellow (Ay) mouse: this

mouse strain encodes a spontaneous and naturally occur-

ring dominant mutation in the agouti gene resulting in a

phenotype characterized by yellow fur, increased linear

length and severe obesity [2, 7]. Normally, agouti protein is

transiently expressed in melanocytes to activate the syn-

thesis of yellow pigment (pheomelanin) and inhibit the

production of black pigment (eumelanin) through antago-

nism of the melanocortin-1-receptor (MC1R) (for review

see [17]). The agouti mutation leads to ubiquitous agouti

protein expression in Ay mouse which allows it to antag-

onize MC4R in the brain. Yellow fur color and obesity in

the Ay mouse is caused through inhibition of MC1R and

MC4R in skin and hypothalamus, respectively [6, 41].

The identification of agouti was the first breakthrough to

clarify the role of central melanocortin system in the
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Fig. 1 Schematic representation of the central melanocortin system
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regulation of energy balance. Based on sequence similarity

with agouti, a novel gene was identified and named agouti-

related peptide (Agrp). Generation of transgenic mice that

over-express agouti or Agrp demonstrated that both mouse

models develop obesity. But only agouti mutants had a

yellow fur color phenotype [46]. This finding indicated that

Agrp does not inhibit Mc1r function in the skin but is

involved in antagonizing a paralog of Mc1r in the brain.

Subsequently, the identification of Mc4r as the mela-

nocortin receptor in the central nervous system that is

antagonized by agouti and Agrp was enabled by a knock-

out experiment in mice. Disruption of Mc4r by gene tar-

geting results in a phenotype similar to that observed in

the Ay mouse characterized by maturity onset obesity,

hyperphagia, hyperinsulinemia and hyperglycemia but

without effects on fur color [29]. This knock-out model

disclosed a novel signaling pathway for the regulation of

body weight and demonstrated that the obesity syndrome

of Ay mice is caused by antagonism of Mc4r by agouti

protein. Measurements of metabolic rate in young wild-

type and Mc4r-null mice with similar body weights

showed that mice deficient for Mc4r consumed less oxy-

gen than wild-type animals. Pair-fed Mc4r knock-out mice

gained more weight compared to their wild-type litter-

mates when fed the same amount of food, supporting the

idea that Mc4r deficient animals have a reduced energy

expenditure [49]. Moreover, Mc4r knock-out mice are

insensitive to the effect of the synthetic melanocortin

receptor agonist melanotan II (MTII). Intraperitoneal

administration of MTII increases metabolic rate and

reduces food consumption in wild-type animals but fails to

promote the same effects in Mc4r-null mice [10]. The

inhibitory effect of MTII on feeding is completely blocked

by intracerebroventricular co-administration of the syn-

thetic agouti mimetic SHU9119 [13]. These results

demonstrate that Mc4r mediates control of food intake and

metabolic rate in mice.

Furthermore, Mc4r signaling influences preferences to

different macronutrients. Intraperitoneal injection of MTII

decreases fat consumption in mice in a dose-dependent

manner. This effect requires Mc4r since Mc4r-deficient

animals do not respond to MTII treatment. Protein and

carbohydrate intake are unaffected by MTII treatment [48].

The endogenous agonists of Mc4r originate from a

common precursor polypeptide termed pro-opiomelano-

cortin (Pomc). Pomc-derived peptides have various

physiological functions, including pigmentation, adreno-

cortical activity and regulation of energy homeostasis.

Pomc is a large protein precursor that is cleaved by pro-

hormone convertases to smaller bioactive neuropeptides

like the Mc4r-agonists a-/b-melanocyte stimulating

hormone (Msh). Deficiency of Pomc in knock-out mice

causes multiple dysfunctions in pigmentation and adrenal

development. The obesity syndrome of Pomc-null mice

resembles characteristics of Mc4r knock-out and Ay mice

like increased linear growth and hyperphagia, allegeable by

reduced Mc4r signaling in hypothalamus [9]. In humans,

Pomc mutations are associated with obesity, adrenal

insufficiency and red hair pigmentation [5, 24, 34].

Mutations in enzymes involved in the maturation of

melanocortin ligands are responsible for the development

of obesity. For example, carboxypeptidase E (Cpe), an

exopeptidase involved in processing of preprohormones

like Pomc, cleaves C-terminal amino acid residues to

generate bioactive molecules. An involvement of Cpe

in regulation of energy homeostasis is highlighted by

the analysis of Cpe-deficient mice (Cpefat/Cpefat). This

naturally occurring mutation results in severe obesity

accompanied by low levels of the mature a-MSH [8].

Attractin (Atrn) is a widely expressed transmembrane

protein whose loss-of-function in mahogany mutant mice

(Atrnmg) rescues the pleiotropic effects of the Ay mutation,

e.g. Atrn suppresses the development of yellow fur color

and obesity [2, 19, 43, 44]. Based on this observation Atrn

Table 1 Mouse models with mutations in the melanocortin system

# Allele Gene Function Mutation Effect Body

length

Effect on

fur color

1 Obese (ob) Leptin Cytokine hormone secreted

by adipocytes

Natural Loss-of-function ; -

2 Diabetes (db) Leptin receptor Cytokine receptor Natural Loss-of-function ; -

3 Agouti (Ay) Agouti Antagonist of Mc1r Natural Gain-of-function : ?

4 Agrp Agouti-related protein Antagonist of hypothalamic MCRs Transgenic Over-expression : -

5 Pomc Pro-opiomelanocortin Protein precursor for MCR agonist Gene targeting Knock-out : ?

6 Fat(fat) Carbooxypeptidase E Pomc maturation Natural Loss-of-function – -

7 Mc4r Melanocortin-4- receptor Integration of energy related

peripheral signals

Gene targeting Knock-out : -

8 Sim1 Single-minded 1 Putative target of MC4R signaling Gene targeting Loss-of-function, : -
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was described as the first obesity suppressor gene. This

finding implicates that Atrn in the Ay mouse is required for

agouti to effectively antagonize Mc1r and Mc4r in skin and

in the brain, respectively. Furthermore, this finding has

raised the possibility that Atrn has a function in Agrp

signaling. However, the Atrnmg mutation does not suppress

obesity induced by Agrp over-expression not excluding

that a molecule similar to Atrn is involved in Agrp action

[22]. For example, a yeast two-hybrid screen utilizing the

intracellular domain of MC4R as bait led to the discovery

of an attractin-like protein (Alp) which is highly co-

expressed with MC4R in the PVN of mice [21]. The Alp

binding motif in Mc4r contains a putative phosphorylation

site indicating that Alp might play a role in Mc4r traf-

ficking. Alp knock-out mice appear normal with no

alterations in body weight or pigmentation [51]. Further

experiments using double mutants over-expressing Agrp

and deficient for ALP could elucidate possible interaction

of these two proteins in vivo.

Recently, a putative downstream mediator of Mc4r

signaling pathway was investigated in different mouse

models. Sim1 (single-minded), a transcription factor

involved in neurogenesis, was identified in a girl with early

onset obesity most likely caused by increased food intake

rather than diminished energy expenditure [26]. Molecular

genetics revealed a chromosomal translocation which

disrupts the Sim1 gene. Interestingly, Sim1 is highly

expressed in the PVN of the hypothalamus [42]. Sim1

heterozygous mice develop hyperphagic obesity, increased

linear growth, hyperinsulinemia and elevated feeding effi-

ciency [27]. MTII injection fails to reduce food intake in

Sim1 heterozygous mice. But like in wild-type mice,

metabolic rate in Sim1 heterozygous mice is increased in

response to MTII treatment [35]. BAC transgenic mice

over-expressing Sim1 are resistant to diet-induced obesity.

Over-expression of Sim1 partially rescues the obese phe-

notype of Ay mice by normalizing food intake. However,

Sim1 over-expression does not affect energy expenditure

[36]. These data led to the suggestion that Sim1 acts

downstream of Mc4r. Neither Sim1 overexpression nor

haploinsufficiency alter metabolic rate thus indicating that

the function of Sim1 is limited to the regulation of food

intake. Divergence in Mc4r pathways regulating food

intake versus energy expenditure was revealed by utilizing

a gene targeted mouse carrying a loxP-flanked transcrip-

tional blocker between the transcriptional start site and the

start codon of the Mc4r exon. Expression of Cre-recom-

binase under the control of Sim1 promotor deletes the

transcriptional blocker and allows Mc4r expression

specifically in neurons of the PVN and the amygdala.

Metabolic phenotyping of these mice demonstrated that

PVN/amygdala-specific restoration of Mc4r completely

rescued hyperphagia but has no effect on energy

expenditure [1]. In conclusion Mc4r in PVN and possibly

also in the amygdala regulates feeding, whereas Mc4r

expressed elsewhere in the central nervous system is

responsible for the regulation of energy expenditure.

Mouse models for the analysis of gene variants

Transgenic animals are a powerful tool to investigate the

biological function of genes. Furthermore, genetically

engineered mouse lines could help to reveal the effect of

certain alleles on metabolism. For instance, mutations in

the MC4R gene are the most common form of monogenic

obesity in humans. Humans encoding MC4R mutations

display an obesity syndrome similar to that observed in

MC4R-null mice. About 6% of severe obese subjects carry

point mutations in or near the MC4R gene [15, 38, 50].

Investigation of signaling activities of these mutant MC4Rs

in assays based on cell culture demonstrated that the

characteristic of obesity correlates with dysfunctions in

receptor properties [14, 25, 39, 52]. The most common

MC4R polymorphism V103I is negatively associated with

obesity [18], a finding meanwhile replicated in several

independent studies [18, 23, 47, 53]. Despite of a negative

association of V103I with obesity, a strong pharmacolog-

ical phenotype of this mutant receptor expressed in cell

culture was not identified. Only one report demonstrated a

lower potency of orexigenic AGRP on V103I correspond-

ing to the distribution of this allele in population screens

[52]. Several point mutations in the Mc4r gene introduced

by chemical mutagenesis have been shown to cause dif-

ferent severity of obesity in mice [40]. Mouse lines

encoding certain point mutations of interest are required

to elucidate the effects of certain alleles on metabolism

in vivo.

Mouse models are a valuable tool to gain insights into

the function of genes and their implications for the devel-

opment of metabolic diseases like obesity. Compared to

several non-mammalian animal models the mouse permits

transferability on human genetic diseases due to the high

degree of similarity between the murine and human gen-

ome. Furthermore, targeted mutations by homologous

recombination are exclusively feasible in murine embry-

onic stem cells. The introduction of targeted mutations in

the mouse may be useful for the functional analysis of

certain genes and polymorphisms that are associated with

metabolic phenotypes in humans. Nevertheless mouse

models show limitations: human diseases like obesity are

caused by interplay among several factors like genes,

environment, psychological and cultural influences.

Though mouse models are not suitable to investigate the

impact of complex social factors on the etiology of human

diseases they can contribute significantly to elucidate the

132 Genes Nutr (2009) 4:129–134

123



role of genetic factors as demonstrated by the function of

melanocortins in the regulation of energy balance.
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